This study explored the impact of partial credit scoring of one type of innovative items (multiple-response items) in a computerized adaptive version of a large-scale licensure pretest and operational test settings. The impacts of partial credit scoring on the estimation of the ability parameters and classification decisions in operational test settings were explored in one real data analysis and two simulation studies when two different polytomous scoring algorithms, automated polytomous scoring and rater-generated polytomous scoring, were applied. For the real data analyses, the ability estimates from dichotomous and polytomous scoring were highly correlated; the classification consistency between different scoring algorithms was nearly perfect. Information distribution changed slightly in the operational item bank. In the two simulation studies comparing each polytomous scoring with dichotomous scoring, the ability estimates resulting from polytomous scoring had slightly higher measurement precision than those resulting from dichotomous scoring. The practical impact related to classification decision was minor because of the extremely small number of items that could be scored polytomously in this current study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.