Florfenicol is an antibiotic approved for veterinary use in cattle in the United States in 1996. Although this drug is not used in poultry, we have detected resistance to florfenicol in clinical isolates of avian Escherichia coli. Molecular typing demonstrated that the florfenicol resistance gene, flo, was independently acquired and is plasmid encoded.
Salmonella infections have been implicated in large-scale die-offs of wild birds in the United States. Although we know quite a bit about the epidemiology of Salmonellainfection among domestic fowl, we know little about the incidence, epidemiology, and genetic relatedness of salmonellae in nondomestic birds. To gain further insight into salmonellae in these hosts, 22Salmonella isolates from diseased nondomestic birds were screened for the presence of virulence and antibiotic resistance-associated genes and compared genetically using pulsed-field gel electrophoresis (PFGE) and random amplified polymorphic DNA analysis. Of the 22 Salmonella isolates examined, 15 were positive for the invasion gene invA and the virulence plasmid-associated genes spvC and pef. Most (15 of 22) were generally sensitive to antibiotics. However, twoSalmonella isolates from pet birds were identified asSalmonella enterica serovar Typhimurium DT104. Despite the general susceptibility of these Salmonella isolates to most antimicrobial agents, antibiotic resistance-associated genesintI1, merA, and aadA1 were identified in a number of these isolates. Five distinctXbaI and nine distinct BlnI DNA patterns were observed for the 22 Salmonella isolates typed by PFGE. PFGE analysis determined that Salmonella isolates from passerines in Georgia and Wyoming were genetically related.
BackgroundPatients with ischemic cardiomyopathy (ICM) may continue to experience persistent chest pain and/or dyspnea despite pharmacologic therapy and revascularization. We hypothesized that ranolazine would reduce anginal symptoms or dyspnea in optimally treated ICM patients.MethodsIn this randomized, double-blind, crossover-design pilot study, 28 patients with ICM (ejection fraction less or equal 40%) were included after providing informed consent. A total of 24 patients completed both placebo and ranolazine treatments and were analyzed. All patients were on treatment with a beta blocker, an angiotensin-converting enzyme inhibitor (or angiotensin receptor blocker), and at least one additional antianginal drug. After randomization, patients received up to 1,000 mg ranolazine orally twice a day, as tolerated, versus placebo. The primary end point was change in angina as assessed by the Seattle Angina Questionnaire (SAQ), or in dyspnea as assessed by the Rose Dyspnea Scale (RDS). Change in the RDS and SAQ score from baseline was compared, for ranolazine and placebo, using the Wilcoxon signed rank test or paired t-test.ResultsPatients had the following demographic and clinical variables: mean age of 71.5 years; male (82.1%); prior coronary bypass surgery (67.9%); prior coronary percutaneous intervention (85.7%); prior myocardial infarction (82.1%); diabetes (67.9%); and mean ejection fraction of 33.1%. No statistical difference was seen between baseline RDS score and that after placebo or ranolazine (n=20) (P≥0.05). There was however, an improvement in anginal frequency (8/10 patients) (P=0.058), quality of life (8/10 patients) (P=0.048), and mean score of all components of the SAQ questionnaire (n=10) (P=0.047) with ranolazine compared with placebo.ConclusionIn optimally treated ICM patients with continued chest pain or dyspnea, ranolazine possibly had a positive impact on quality of life, a reduction in anginal frequency, and an overall improvement in the mean SAQ component score compared with baseline. Ranolazine did not change the dyspnea score compared with baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.