The American Cancer Society reports the incidence of squamous cell carcinoma in males to be thrice the incidence in females. This increased squamous cell carcinoma incidence has been attributed to men accumulating more sun exposure and using less sun protection than women. To date, there have been no controlled studies examining the effect of gender on skin tumor development following equal doses of UVB. Gender differences in UVB-induced skin carcinogenesis were examined using the Skh-1 mouse model. After chronic exposure to equal doses of UVB, male mice developed tumors earlier and had more tumors than female mice; tumors in male mice tended to be larger, and the total tumor burden was greater than in females. In addition, tumors in males were of more advanced histologic grade compared with those of female mice. To evaluate the contribution of differences in inflammation and DNA damage to differences in skin carcinogenesis, male and female Skh-1 mice were exposed once to 2,240 J/m 2 UVB and examined 48 h after exposure. Surprisingly, male mice developed less of an inflammatory response, as determined by skin fold thickness and myeloperoxidase activity, compared with females. Interestingly, male mice showed more cutaneous oxidative DNA damage than the females and lower antioxidant levels. These results show a gender bias in skin carcinogenesis and suggest that the gender difference in tumor development is more influenced by the extent of oxidative DNA damage and antioxidant capacities than by inflammatory response. [Cancer Res 2007;67(7):3468-74]
Cyclooxygenase-2 (COX-2) and the prostaglandin products generated as a result of COX-2 activity mediate a variety of biological and pathological processes. Scarless healing occurs in fetal skin in the first and second trimesters of development. This scarless healing process is known to proceed without a significant inflammatory response, which appears to be important for the lack of scarring. Because the COX-2 pathway is an integral component of inflammation, we investigated its role in the fetal repair process using a mouse model of scarless fetal wound healing. COX-2 expression in scarless and fibrotic fetal wounds was examined. In addition, the ability of exogenous prostaglandin E(2) to alter scarless fetal healing was evaluated. The results suggest that the COX-2 pathway is involved in scar production in fetal skin and that targeting COX-2 may be useful for limiting scar formation in adult skin.
Chronic exposure to UV light, the primary cause of skin cancer, results in the induction of high levels of cyclooxygenase-2 (COX-2) expression in the skin. The involvement of COX-2 in the carcinogenesis process is mediated by its enzymatic product, prostaglandin E(2) (PGE(2)). PGE(2) has been shown to have a variety of activities that can contribute to tumor development and growth. The effects of PGE(2) on different cell types are mediated by four E prostanoid (EP) receptors, EP(1)-EP(4). While recent studies have demonstrated the importance of EP(1) in the development of colon and breast cancer, the extent of EP(1) involvement in the cutaneous photocarcinogenesis process is unknown. This study found that topical treatment with celecoxib or the specific EP(1) antagonist ONO-8713 decreased acute UVB-induced inflammation in the skin and significantly reduced the number of tumors per mouse following 25 weeks of UVB exposure and topical treatment. This study suggests that drugs designed to block EP(1) may have the potential to be used as anti-inflammatory and/or chemopreventive agents that reduce the risk of skin cancer development.
Light in the UVB spectrum (280-320 nm) induces a number of changes in the epidermis and dermis of mice and humans, resulting in a robust inflammatory response. A standardized black raspberry extract (BRE) has been effective in reducing signaling pathways commonly initiated by inflammatory stimuli. In this study, we determined whether this extract could reduce cutaneous UVB-induced inflammation and carcinogenesis. In our carcinogenesis model, female SKH-1 hairless mice were exposed to one minimal erythemal dose of UVB thrice weekly on nonconsecutive days for 25 weeks. Immediately after each exposure, the mice were treated topically with either BRE dissolved in vehicle or with vehicle only. Beginning on week 19, mice treated with BRE had a significant reduction in tumor number and in average tumor size. This reduction correlated with a significant reduction in tumor-infiltrating CD3+foxp3+ regulatory T-cells. In the acute model, mice were exposed to a single minimal erythemal dose of UVB and treated topically with BRE or with vehicle. At 48 hours post-UVB exposure, topical BRE treatment significantly reduced edema, p53 protein levels, oxidative DNA damage, and neutrophil activation. The ability of topical BRE to reduce acute UVB-induced inflammation and to decrease tumor development in a long-term model provides compelling evidence to explore the clinical efficacy of BRE in the prevention of human skin cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.