NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or ‘danger signals’. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis.
SummaryAnthrax toxin protective antigen (PA) binds cell surface receptors (e.g. ANTXR1,2), forms heptameric pores, and translocates lethal factor (LF) or oedema factor (OF) into the cytoplasm of mammalian cells. In the current study, we sought to determine how receptor levels influence these events, by examining PA heptamer stability and related processes in macrophages that overexpress ANTXR1 (RAW 264.7 ANTXR1). In these experiments, PA-oligomers demonstrated an extended half-life in RAW 264.7 ANTXR1 macrophages, with SDS-resistant heptamers detected up to 10 h following treatment, while levels of PAoligomers declined within 3 h in control cells. RAW 264.7 ANTXR1 macrophages were also more sensitive to lethal toxin, a combination of PA and LF. Surprisingly, we found that PA alone was cytotoxic to RAW 264.7 ANTXR1 cells. Further analysis found that PA cytotoxicity required direct interaction with ANTXR1, oligomerization, channel formation, endosomal acidification, and was independent of the ANTXR1 cytoplasmic tail. PA intoxication of RAW 264.7 ANTXR1 macrophages resulted in caspase-3 activation, with corresponding DNA fragmentation and proteolytic cleavage of poly-ADP-ribose polymerase, as well as activation of Bid, suggesting cell death occurred via apoptosis. Overall, results from the current study suggest that receptor levels dictate the extent of PA oligomer stability, and shifts in this normal process can lead to cell death via apoptosis in the absence of toxin catalytic subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.