Retinoic acid receptors (RARs) are ligand-controlled transcription factors that function as heterodimers with retinoid X receptors (RXRs) to regulate cell growth and survival. The success of RAR modulation in the treatment of acute promyelocytic leukaemia (APL) has stimulated considerable interest in the development of RAR and RXR modulators. This has been aided by recent advances in the understanding of the biological role of RARs and RXRs and in the design of selective receptor modulators that might overcome the limitations of current drugs. Here, we discuss the challenges and opportunities for therapeutic strategies based on RXR and RAR modulators, with a focus on cancer and metabolic diseases such as diabetes and obesity.
Fibroblast growth factor (FGF)21 improves insulin sensitivity, reduces body weight, and reverses hepatic steatosis in preclinical species. We generated long-acting FGF21 mimetics by site-specific conjugation of the protein to a scaffold antibody. Linking FGF21 through the C terminus decreased bioactivity, whereas bioactivity was maintained by linkage to selected internal positions. In mice, these CovX-Bodies retain efficacy while increasing half-life up to 70-fold compared with wild-type FGF21. A preferred midlinked CovX-Body, CVX-343, demonstrated enhanced in vivo stability in preclinical species, and a single injection improved glucose tolerance for 6 days in ob/ob mice. In diet-induced obese mice, weekly doses of CVX-343 reduced body weight, blood glucose, and lipids levels. In db/db mice, CVX-343 increased glucose tolerance, pancreatic b-cell mass, and proliferation. CVX-343, created by linkage of the CovX scaffold antibody to the engineered residue A129C of FGF21 protein, demonstrated superior preclinical pharmacodynamics by extending serum half-life of FGF21 while preserving full therapeutic functionality.
Hypertriglyceridemia is a frequent complication accompanying the treatment of patients with either retinoids or rexinoids, [retinoid X receptor (RXR)-selective retinoids]. To investigate the cellular and molecular basis for this observation, we have studied the effects of rexinoids on triglyceride metabolism in both normal and diabetic rodents. Administration of a rexinoid such as LG100268 (LG268) to normal or diabetic rats results in a rapid increase in serum triglyceride levels. LG268 has no effect on hepatic triglyceride production but suppresses post-heparin plasma lipoprotein lipase (LPL) activity suggesting that the hypertriglyceridemia results from diminished peripheral processing of plasma very low density lipoproteins particles. Treatment of diabetic rats with rexinoids suppresses skeletal and cardiac muscle but not adipose tissue LPL activity. This effect is independent of changes in LPL mRNA. In C2C12 myocytes, LG268 suppresses the level of cell surface (i.e., heparin-releasable) LPL activity without altering LPL mRNA. This effect is very rapid (t(1/2) = 2 h) and is blocked by the transcriptional inhibitor actinomycin D. These studies demonstrate that RXR ligands can have dramatic effects on the post-translational processing of LPL and suggest that skeletal muscle may be an important target of rexinoid action. In addition, these data underscore that the metabolic consequences of RXR activation are distinct from either retinoic acid receptor or peroxisome proliferator-activated receptor activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.