Aims This observational study characterized cardiovascular disease (CVD) mortality risk for multiple cancer sites, with respect to the following: (i) continuous calendar year, (ii) age at diagnosis, and (iii) follow-up time after diagnosis. Methods and results The Surveillance, Epidemiology, and End Results program was used to compare the US general population to 3 234 256 US cancer survivors (1973–2012). Standardized mortality ratios (SMRs) were calculated using coded cause of death from CVDs (heart disease, hypertension, cerebrovascular disease, atherosclerosis, and aortic aneurysm/dissection). Analyses were adjusted by age, race, and sex. Among 28 cancer types, 1 228 328 patients (38.0%) died from cancer and 365 689 patients (11.3%) died from CVDs. Among CVDs, 76.3% of deaths were due to heart disease. In eight cancer sites, CVD mortality risk surpassed index-cancer mortality risk in at least one calendar year. Cardiovascular disease mortality risk was highest in survivors diagnosed at <35 years of age. Further, CVD mortality risk is highest (SMR 3.93, 95% confidence interval 3.89–3.97) within the first year after cancer diagnosis, and CVD mortality risk remains elevated throughout follow-up compared to the general population. Conclusion The majority of deaths from CVD occur in patients diagnosed with breast, prostate, or bladder cancer. We observed that from the point of cancer diagnosis forward into survivorship cancer patients (all sites) are at elevated risk of dying from CVDs compared to the general US population. In endometrial cancer, the first year after diagnosis poses a very high risk of dying from CVDs, supporting early involvement of cardiologists in such patients.
Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.