Following intranasal administration, the severe acute respiratory syndrome (SARS) coronavirus replicated to high titers in the respiratory tracts of BALB/c mice. Peak replication was seen in the absence of disease on day 1 or 2, depending on the dose administered, and the virus was cleared within a week. Viral antigen and nucleic acid were detected in bronchiolar epithelial cells during peak viral replication. Mice developed a neutralizing antibody response and were protected from reinfection 28 days following primary infection. Passive transfer of immune serum to naïve mice prevented virus replication in the lower respiratory tract following intranasal challenge. Thus, antibodies, acting alone, can prevent replication of the SARS coronavirus in the lung, a promising observation for the development of vaccines, immunotherapy, and immunoprophylaxis regimens.
Severe acute respiratory syndrome (SARS) was first described during a 2002–2003 global outbreak of severe pneumonia associated with human deaths and person-to-person disease transmission. The etiologic agent was initially identified as a coronavirus by thin-section electron microscopic examination of a virus isolate. Virions were spherical, 78 nm in mean diameter, and composed of a helical nucleocapsid within an envelope with surface projections. Herein, we show that infection with the SARS-associated coronavirus resulted in distinct ultrastructural features: double-membrane vesicles, nucleocapsid inclusions, and large granular areas of cytoplasm. These three structures and the coronavirus particles were shown to be positive for viral proteins and RNA by using ultrastructural immunogold and in situ hybridization assays. In addition, ultrastructural examination of a bronchiolar lavage specimen from a SARS patient showed numerous coronavirus-infected cells with features similar to those in infected culture cells. Electron microscopic studies were critical in identifying the etiologic agent of the SARS outbreak and in guiding subsequent laboratory and epidemiologic investigations.
Pertussis should be suspected in any infant death associated with marked leukocytosis, bronchopneumonia, or refractory pulmonary hypertension, particularly in children aged
Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ∼35% mortality. The potential for a future pandemic originating from animal reservoirs or healthcare-associated events is a major public health concern. There are no vaccines or therapeutic agents currently available for MERS-CoV. Using a probe-based single B cell-cloning strategy, we have identified and characterized multiple neutralizing mAbs specifically binding to the receptor binding domain (RBD) or S1 (non-RBD) regions from a convalescent MERS-CoV-infected patient and from immunized rhesus macaques. RBD-specific mAbs tended to have greater neutralizing potency than non-RBD S1-specific mAbs. Six RBD-specific and five S1-specific mAbs could be sorted into four RBD and three non-RBD distinct binding patterns, based on competition assays, mapping neutralization escape variants, and structural analysis. We determined co-crystal structures for two mAbs targeting RBD from different angles and show they can only bind RBD in the "out" position. We then showed that selected RBD-specific, non-RBD S1, and S2-specific mAbs given prophylactically prevented MERS-CoV replication in lungs and protected mice from lethal challenge. Importantly, combining RBD- and non-RBD mAbs delayed the emergence of escape mutations in a cell-based virus-escape assay. These studies identify mAbs targeting different antigenic sites on S that will be useful for defining mechanisms of MERS-CoV neutralization, and for developing more effective interventions to prevent or treat MERS-CoV infections. MERS-CoV causes a highly lethal respiratory infection for which no vaccines or antiviral therapeutic options are currently available. Based on continuing exposure from established reservoirs in dromedary camels and bats, transmission of MERS-CoV into humans and future outbreaks are expected. Using structurally-defined probes for the MERS-CoV Spike (S) glycoprotein, the target for neutralizing antibodies, single B cells were sorted from a convalescent human and immunized non-human primates (NHPs). mAbs produced from paired immunoglobulin gene sequences were mapped to multiple epitopes within and outside the receptor-binding domain (RBD) and protected against lethal MERS infection in a murine model following passive immunization. Importantly, combining mAbs targeting distinct epitopes prevented viral neutralization escape from RBD-directed mAbs. These data suggest that antibody responses to multiple domains on CoV Spike may improve immunity and will guide future vaccine and therapeutic development efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.