As natural wetlands disappear, constructed wetlands may play vital roles in amphibian conservation. However, previous investigations have concluded that artificial wetlands do not adequately replace lost wildlife habitat. Nevertheless, constructed wetlands serve as breeding habitat for amphibians where extensive natural wetland loss has occurred. To investigate the roles of engineered wetland features on amphibian abundance, we surveyed 49 constructed wetlands throughout northern Missouri. Cricket frogs (Acris crepitans), bullfrogs (Lithobates catesbeianus), and leopard frogs (Lithobates blairi/sphenocephalus complex) each occurred in over 80% of surveyed wetlands. Salamanders and hylid frogs were rarely encountered. We used an information theoretic approach to examine relationships between individual species and habitat features associated with wetland designs and placements. We found that models incorporating design features of open water ponds best explained abundances of most commonly encountered species. At the placement level, models that included nearby aquatic habitat ranked highest for common species. Salamanders and most hylid frogs responded positively to aquatic vegetative cover but negatively to fish abundance and anthropogenic disturbance-related features in the landscape. Our results indicate that to be effective amphibian conservation tools, constructed wetlands should be fish-free, heavily vegetated, include shallows, and placed within areas of low anthropogenic disturbance.
Summary1. Restored and constructed habitats can play important conservation roles. Predators help shape communities in these habitats through complex interactions with prey, other predators and biotic and abiotic characteristics of the environment. However, introduced predators can have dramatic effects that may be difficult to predict. 2. Using regression models, we compared influences of introduced invasive western mosquitofish Gambusia affinis to those of two naturally colonizing predators (crayfish and dragonflies), and vegetation, on three anuran species in experimentally constructed wetlands. Using analyses of covariance, we also examined influences of mosquitofish and vegetation on aquatic invertebrate communities. 3. We found that mosquitofish reduced abundances of grey treefrogs Hyla versicolor and H. chrysoscelis and boreal chorus frog Pseudacris maculata, but had no significant influence on green frog Lithobates clamitans. Mosquitofish also reduced invertebrate abundance, but their effect on richness was less clear. Vegetation cover did not significantly increase most anuran or invertebrate abundances. However, vegetation increased invertebrate richness. After fish removal, invertebrate abundance increased. Fish removal may have facilitated chorus frog re-colonization into wetlands with low abundance of invertebrate predators. 4. Our results indicate that mosquitofish are detrimental to wetland communities, and we recommend that managers avoid stocking mosquitofish. We also encourage temporary or drainable wetlands to prevent mosquitofish persistence if colonization occurs. Implementing these recommendations will improve the conservation potential of restored wetlands.
Aquatic habitat features can directly influence the abundance, species richness, and quality of juvenile amphibians recruited into adult populations. We examined the influences of within-wetland slope, vegetation, and stocked mosquito fish (Gambusia affinis) on amphibian metamorph production and species richness during the first two years post-construction at 18 experimental wetlands in northeast Missouri (U.S.A.) grasslands. We used an information theoretic approach (AICc) to rank regression models representing total amphibian metamorph production, individual amphibian species metamorph production, and larval amphibian species richness. Total amphibian metamorph production was greatest at shallow-sloped, fish-free wetlands during the first year, but shallow-sloped wetlands with high vegetation cover were best the second year. Species richness was negatively associated with fish and positively associated with vegetation in both survey years. Leopard frog (Rana blairi/sphenocephala complex) metamorph quality, based on average metamorph size, was influenced by slope and the number of cohorts in the wetland. However, the tested variables had little influence on the size of American toads (Bufo americanus) or boreal chorus frogs (Pseudacris maculata). Our results indicate that wetlands designed to act as functional reproductive habitat for amphibians should incorporate shallows, high amounts of planted or naturally established vegetation cover, and should be fish-free.
Waste sorts were conducted during each of the four quarters (or seasons) of 1996 at the City of Columbia Sanitary Landfill. A detailed physical sampling protocol was outlined. Weight fractions of 32 waste components were quantified from all geographic areas that contribute to the Columbia Sanitary Landfill using a two-way stratification method, which accounted for variations in geographical regions and seasons. Comparisons of solid waste generated between locations and seasons were conducted at the 80% confidence level. The composition of the entire waste stream was 41% paper, 21% organic, 16% plastic, 6% metal, 3% glass and 13% other waste. Paper was the largest composition and glass was the smallest composition for all geographical regions. The result of this study was also compared with a 1987 Columbia, Missouri study conducted by EIERA (1987), with studies conducted in other states such as Minnesota, Wisconsin, Oregon and with national study conducted by the USEPA (USEPA 530-R-96-001, PB96-152 160. US Environmental Protection Agency, Office of Solid Waste, Washington, DC). The results of studies from other states are different from this study due to different local conditions, different methodologies and a different scope. There was a small (5%) increase in per capita weight from 1987 to 1996. The total per capita weight in the present study was 60% greater than the national per capita weight reported by the USEPA (1996) due to that the USEPA report excluded industrial, construction and certain commercial waste. The total per capita weight agrees with the national per capita weight for municipal waste reported by Tchobanoglous (1993), which included industrial, construction and commercial sources. The geographical and seasonal effects on the waste composition are evaluated and discussed. Statistical analysis indicates that waste characteristics are different among geographical regions and seasons. The potential for waste recovery and reduction is also discussed.
Sandia National Laboratories (SNL) convened an expert panel to develop design characteristics for permanent markers and to judge the efficacy of the markers in deterring inadvertent human intrusion in the Waste Isolation Pilot Plant (WIPP). The WIPP, located in southeastern New Mexico, is designed to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated by the United States Department of Energy (DOE) defense programs. The DOE must evaluate WIPP compliance with the Environmental Protection Agency (EPA) regulation Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191, Subpart E); this EPA regulation requires: "Disposal sites shall be designated by the most permanent markers, records, and other passive institutional controls practicable t o indicate the dangers of the wastes and their location" (Federal Register 50; 38086~). The period of regulatory,concern is 10,000 years. 2-2 2.2.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.