Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.food security | AgMIP | ISI-MIP | climate impacts | agriculture T he magnitude, rate, and pattern of climate change impacts on agricultural productivity have been studied for approximately two decades. To evaluate these impacts, researchers use biophysical process-based models (e.g., refs. 1-5), agro-ecosystem models (e.g., ref. 6), and statistical analyses of historical data (e.g., refs. 7 and 8). Although these and other methods have been widely used to forecast potential impacts of climate change on future agricultural productivity, the protocols used in previous assessments have varied to such an extent that they constrain crossstudy syntheses and limit the ability to devise relevant adaptation options (9, 10). In this project we have brought together seven global gridded crop models (GGCMs) for a coordinated set of simulations of global crop yields under evolving climate conditions. This GGCM intercomparison was coordinated by the Agricultural Model Intercomparison and Improvement Project (AgMIP; 11) as part of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP; 12). In order to facilitate analyses across models and sectors, all global models are driven with consistent biascorrected climate forcings derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive (13). The objectives are to (i) establish the range of uncertainties of climate change impacts on crop productivity worldwide, (ii) determine key differences in current approaches used by crop modeling groups in global analyses, and (iii) propose improvements in GGCMs and in the methodologies for future intercomparisons to produce more reliable assessments.We examine the basic patterns of response to climate across crops, latitudes, time periods, regional temperatures, and atmospheric carbon dioxide concentrations [CO 2 ]. In anticipation of the wider scientific community using these model outputs and the expanded application of GGCMs, we introduce these models and present guidelines for their pract...
Land use and land cover data play a central role in climate change assessments. These data originate from different sources and inventory techniques. Each source of land use/cover data has its own domain of applicability and quality standards. Often data are selected without explicitly considering the suitability of the data for the specific application, the bias originating from data inventory and aggregation, and the effects of the uncertainty in the data on the results of the assessment. Uncertainties due to data selection and handling can be in the same order of magnitude as uncertainties related to the representation of the processes under investigation. While acknowledging the differences in data sources and the causes of inconsistencies, several methods have been developed to optimally extract information from the data and document the uncertainties. These methods include data integration, improved validation techniques and harmonization of classification systems. Based on the data needs of global change studies and the data availability, recommendations are formulated aimed at optimal use of current data and focused efforts for additional data collection. These include: improved documentation using classification systems for land use/cover data; careful selection of data given the specific application and the use of appropriate scaling and aggregation methods. In addition, the data availability may be improved by the combination of different data sources to optimize information content while collection of additional data must focus on validation of available data sets and improved coverage of regions and land cover types with a high level of uncertainty. Specific attention in data collection should be given to the representation of land management (systems) and mosaic landscapes.
The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3°C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4°C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.coinciding pressures | differential climate impacts | ISI-MIP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.