Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies.
Age-related macular degeneration (AMD) is a devastating disease-causing vision loss in millions of people around the world. In advanced stages of disease, death of photoreceptor cells, retinal pigment epithelial cells, and choroidal endothelial cells (CECs) are common. Loss of endothelial cells of the choriocapillaris is one of the earliest detectable events in AMD, and, because the outer retina relies on the choriocapillaris for metabolic support, this loss may be the trigger for progression to more advanced stages. Here we highlight evidence for loss of CECs, including changes to vascular density within the choriocapillaris, altered abundance of CEC markers, and changes to overall thickness of the choroid. Furthermore, we review the key components and functions of the choroid, as well as Bruch's membrane, both of which are vital for healthy vision. We discuss changes to the structure and molecular composition of these tissues, many of which develop with age and may contribute to AMD pathogenesis. For example, a crucial event that occurs in the aging choriocapillaris is accumulation of the membrane attack complex, which may result in complement-mediated CEC lysis, and may be a primary cause for AMD-associated choriocapillaris degeneration. The actions of elevated monomeric C-reactive protein in the choriocapillaris in at-risk individuals may also contribute to the inflammatory environment in the choroid and promote disease progression. Finally, we discuss the progress that has been made in the development of AMD therapies, with a focus on cell replacement.
Age-related macular degeneration (AMD) is a devastating disease characterized by central vision loss in elderly individuals. Previous studies have suggested a link between elevated levels of total C-reactive protein (CRP) in the choroid, CFH genotype, and AMD status; however, the structural form of CRP present in the choroid, its relationship to CFH genotype, and its functional consequences have not been assessed. In this report, we studied genotyped human donor eyes (n = 60) and found that eyes homozygous for the high-risk CFH (Y402H) allele had elevated monomeric CRP (mCRP) within the choriocapillaris and Bruch’s membrane, compared to those with the low-risk genotype. Treatment of choroidal endothelial cells in vitro with mCRP increased migration rate and monolayer permeability compared to treatment with pentameric CRP (pCRP) or medium alone. Organ cultures treated with mCRP exhibited dramatically altered expression of inflammatory genes as assessed by RNA sequencing, including ICAM-1 and CA4, both of which were confirmed at the protein level. Our data indicate that mCRP is the more abundant form of CRP in human choroid, and that mCRP levels are elevated in individuals with the high-risk CFH genotype. Moreover, pro-inflammatory mCRP significantly affects endothelial cell phenotypes in vitro and ex vivo, suggesting a role for mCRP in choroidal vascular dysfunction in AMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.