Knowledge of natural long-term rainfall variability is essential for water-resource and land-use management in sub-humid regions of the world. In tropical Africa, data relevant to determining this variability are scarce because of the lack of long instrumental climate records and the limited potential of standard high-resolution proxy records such as tree rings and ice cores. Here we present a decade-scale reconstruction of rainfall and drought in equatorial east Africa over the past 1,100 years, based on lake-level and salinity fluctuations of Lake Naivasha (Kenya) inferred from three different palaeolimnological proxies: sediment stratigraphy and the species compositions of fossil diatom and midge assemblages. Our data indicate that, over the past millennium, equatorial east Africa has alternated between contrasting climate conditions, with significantly drier climate than today during the 'Medieval Warm Period' (approximately AD 1000-1270) and a relatively wet climate during the 'Little Ice Age' (approximately AD 1270-1850) which was interrupted by three prolonged dry episodes. We also find strong chronological links between the reconstructed history of natural long-term rainfall variation and the pre-colonial cultural history of east Africa, highlighting the importance of a detailed knowledge of natural long-term rainfall fluctuations for sustainable socio-economic development.
Estimates of past lake-water salinity from fossil diatom assemblages were used to infer past climatic conditions at Moon Lake, a climatically sensitive site in the northern Great Plains. A good correspondence between diatom-inferred salinity and historical records of mean annual precipitation minus evapotranspiration (P -ET) strongly suggests that the sedimentary record from Moon
Reconstructions of lake-water salinity at decadal resolution for the last 2,000 years are compared among three lakes in North Dakota to infer regional patterns of drought. The intersite comparisons are used to distinguish local variation in climate or hydrology from regional patterns of change. At one lake, diatom-inferred salinity and lake-water Mg/Ca inferred from ostracode shell chemistry are coherent, both in terms of direction and magnitude of change, indicating that each is a robust technique for reconstructing lake-water chemistry. The data show that the last 2,000 years have been characterized by frequent shifts between high and low salinity, suggesting shifts between dry and moist periods. Long intervals of high salinity suggest periods of multiple decades when droughts were intense and frequent, thus indicating times when drought was more persistent than in the 20th century. Both the Medieval Period and Little Ice Age were hydrologically complex, and there is no clear evidence to suggest that either interval was coherent or unusual in effective moisture relative to long-term patterns. Differences among the three sites may be attributed to variation in local hydrology, and these differences emphasize the need for multiple sites in deriving regional climate interpretations from paleoecological data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.