Epstein-Barr virus (EBV) is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL) in immunosuppressed patients. However, the cellular mechanism(s) that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1) promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs) cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.
Gastrointestinal stromal tumors (GIST) can be successfully treated with imatinib mesylate (Gleevec); however, complete remissions are rare and patients frequently achieve disease stabilization in the presence of residual tumor masses. The clinical observation that discontinuation of treatment can lead to tumor progression suggests that residual tumor cells are, in fact, quiescent and, therefore, able to re-enter the cell-division cycle. In line with this notion, we have previously shown that imatinib induces GIST cell quiescence in vitro through the APC CDH1 -SKP2-p27Kip1 signaling axis. Here, we provide evidence that imatinib induces GIST cell quiescence in vivo and that this process also involves the DREAM complex, a multisubunit complex that has recently been identified as an additional key regulator of quiescence. Importantly, inhibition of DREAM complex formation by depletion of the DREAM regulatory kinase DYRK1A or its target LIN52 was found to enhance imatinib-induced cell death. Our results show that imatinib induces apoptosis in a fraction of GIST cells while, at the same time, a subset of cells undergoes quiescence involving the DREAM complex. Inhibition of this process enhances imatinib-induced apoptosis, which opens the opportunity for future therapeutic interventions to target the DREAM complex for more efficient imatinib responses. Cancer Res; 73(16); 5120-9. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.