Maternally transmitted non-syndromic deafness was described recently both in pedigrees with susceptibility to aminoglycoside ototoxicity and in a large Arab-Israeli pedigree. Because of the known action of aminoglycosides on bacterial ribosomes, we analysed the sequence of the mitochondrial rRNA genes of three unrelated patients with familial aminoglycoside-induced deafness. We also sequenced the complete mitochondrial genome of the Arab-Israeli pedigree. All four families shared a nucleotide 1555 A to G substitution in the 12S rRNA gene, a site implicated in aminoglycoside activity. Our study offers the first description of a mitochondrial rRNA mutation leading to disease, the first cases of non-syndromic deafness caused by a mitochondrial DNA mutation and the first molecular genetic study of antibiotic-induced ototoxicity.
Profound, early-onset deafness is present in 4-11 per 10,000 children, and is attributable to genetic causes in at least 50% of cases. Family history questionnaires were sent to 26,152 families of children with profound, early-onset deafness not known to be related to an environmental cause. The probands were ascertained through the 1988-89 Gallaudet University Annual Survey of Hearing Impaired Children and Youth. The analysis is based on the responses that were received from 8,756 families. Classical segregation analysis was used to analyze the family data, and to estimate the proportions of sporadic, recessive and dominant causes of deafness in the families. These data were consistent with 37.2% of the cases due to sporadic causes, and 62.8% due to genetic causes (47.1% recessive, and 15.7% dominant). An earlier study using the 1969-70 Annual Survey found 49.3% sporadic cases and 50.6% genetic, demonstrating that the proportion of sporadic cases of early-onset deafness has significantly decreased since 1970.
Prestin, a membrane protein that is highly and almost exclusively expressed in the outer hair cells (OHCs) of the cochlea, is a motor protein which senses membrane potential and drives rapid length changes in OHCs. Surprisingly, prestin is a member of a gene family, solute carrier (SLC) family 26, that encodes anion transporters and related proteins. Of nine known human genes in this family, three (SLC26A2, SLC26A3 and SLC26A4) are associated with different human hereditary diseases. The restricted expression of prestin in OHCs, and its proposed function as a mechanical amplifier, make it a strong candidate gene for human deafness. Here we report the cloning and characterization of four splicing isoforms for the human prestin gene (SLC26A5a, b, c and d). SLC26A5a is the predominant form of prestin whereas the others showed limited distribution associated with certain developmental stages. Based on the functional importance of prestin we screened for possible mutations involving the prestin gene in a group of deaf probands. We have identified a 5'-UTR splice acceptor mutation (IVS2-2A>G) in exon 3 of the prestin gene, which is responsible for recessive non-syndromic deafness in two unrelated families. In addition, a high frequency of heterozygosity for the same mutation was observed in these subjects, suggesting the possibility of semi-dominant influence of the mutation in causing hearing loss. Finally, the observation of this mutation only in the Caucasian probands indicated an association with a specific ethnic background. This study thereby reveals an essential function of prestin in human auditory processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.