Females alter their mate choices as they transition through different reproductive stages; however, the proximal mechanisms for such behavioral fluctuation are unclear. In many taxa, as females transition through different reproductive stages, there is an associated change in hormone levels; therefore, we examined whether fluctuation in hormone levels serves as a proximal mechanism for within-individual variation in mate choice in female túngara frogs (Physalaemus pustulosus). We manipulated hormone levels of females by administering 0, 10, 100, 500 or 1000 IU of human chorionic gonadotropin (HCG), which is a ligand for luteinizing hormone (LH) receptors and will therefore cause increased gonadal hormone production. Phonotaxis assays were conducted to measure three aspects of mate choice behavior before and after HCG administration; receptivity (response to a conspecific mate signal), permissiveness (response to a signal that is less attractive than conspecific signals) and discrimination (ability to discern signal differences). The probability of response to a conspecific and an artificial hybrid signal significantly increased at the highest HCG doses. The difference in mean response time between pre-and post-HCG tests was significantly different for both the receptivity and permissiveness tests among the five doses. Increased permissiveness, however, was not due to decreased discrimination because females could discriminate between calls even at the highest HCG doses. These hormonal manipulations caused the same behavioral pattern we reported in females as they transitioned through different reproductive stages (Lynch, K.S., Rand, A.S., Ryan, M.J., Wilczynski, W., 2005. Plasticity in female mate choice associated with changing reproductive states. Anim. Behav. 69, 689-699), suggesting that changes in hormone levels can influence the female's mate choice behavior.
Amphibian behavioral endocrinology has focused on reproductive social behavior and communication in frogs and newts. Androgens and estrogens are critical for the expression of male and female behavior, respectively, and their effects are relatively clear. Corticosteroids have significant modulatory effects on the behavior of both sexes, as does the peptide neuromodulator arginine vasotocin in males, but their effects and interactions with gonadal steroids are often complex and difficult to understand. Recent work has shown that the gonadal hormones and social behavior are mutually reinforcing: engaging in social interactions increases hormone levels just as increasing hormone levels change behavior. The reciprocal interactions of hormones and behavior, as well as the complex interactions among gonadal steroids, adrenal steroids, and peptide hormones have implications for the maintenance and evolution of natural social behavior, and suggest that a deeper understanding of both endocrine mechanisms and social behavior would arise from field studies or other approaches that combine behavioral endocrinology with behavioral ecology.
Genes that mediate mate preferences potentially play a key role in promoting and maintaining biological diversity. In this study, we compare mate preference behavior in two related poeciliid fishes with contrasting behavioral phenotypes and relate these behavioral differences to gene profiles in the brain. Results reveal that one poeciliid fish, the Northern swordtail, exhibits robust mate preference as compared to the Western mosquitofish, which utilizes a coercive mating system. Female swordtails display no significant difference in association time between male-and female-exposure trials, whereas female mosquitofish spend significantly less time associating with males relative to females. Furthermore, the preference strength for large males is significantly lower in female mosquitofish relative to swordtails. We then examine expression of three candidate genes previously shown to be associated with mate preference behavior in female swordtails and linked to neural plasticity in other vertebrates: neuroserpin (NS), neuroligin-3 (NLG-3) and N-methyl-D-aspartate receptor (NMDA-R). Whole brain gene expression patterns reveal that two genes (NS and NLG-3) are positively associated with mate preference behavior in female swordtails, a pattern opposing that of the mosquitofish. In mosquitofish females, these genes are downregulated when females express biases toward males yet are elevated in association with total motor activity patterns under asocial conditions, suggesting that the presence of males in mosquitofish species may inhibit expression of these genes. Both gene expression and female behavioral responses to males exhibit opposing patterns between these species, suggesting that this genetic pathway may potentially act as a substrate for the evolution of mate preference behavior.
Temperate zone animals exhibit seasonal variation in reproductive physiology. In most cases, seasonal changes in reproductive states are regulated by changes in GnRH1 secretion, rather than synthesis, from the preoptic area (POA)/anterior hypothalamus. An important exception occurs in some songbirds that become photorefractory to the stimulatory effects of long days and show profound decreases in brain GnRH1 protein content. Whether this decline reflects changes in gene expression is unknown because of past failures to measure GNRH1 mRNA levels, due in large part to the absence of available GNRH1 gene sequence in this taxon. Here, we report the first cloning of GNRH1 cDNAs in two songbirds: European starlings and zebra finches. Consistent with the size of the prepro-hormone in other avian and non-avian species, the open-reading frames predict proteins of 91 and 92 amino acids, respectively. Whereas the decapeptide in both species is perfectly conserved with chicken GnRH1, the amino acid identity in the signal peptide and GNRH associated peptide subdomains are significantly less well conserved. At the nucleotide level, the starling and zebra finch coding sequences are approximately 88% identical to each other but only approximately 70% identical to chicken GNRH1. In situ hybridization using radiolabeled cRNA probes demonstrated GNRH1 mRNA expression primarily in the POA, consistent with previous studies on the distribution of the GnRH1-immunoreactive cell bodies. Furthermore, we provide evidence for photoperiod-dependent regulation of GNRH1 mRNA in male starlings. Declines in GNRH1 mRNA levels occur in parallel with testicular involution. Thus, photorefractoriness is associated with decreases in GNRH1 gene expression in the medial POA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.