Tumor necrosis factor alpha (TNF-␣) and glucocorticoids are widely recognized as mutually antagonistic regulators of adaptive immunity and inflammation. Surprisingly, we show here that they cooperatively regulate components of innate immunity. The Toll-like receptor 2 (TLR2) gene encodes a transmembrane receptor critical for triggering innate immunity. Although TLR2 mRNA and protein are induced by inflammatory molecules such as TNF-␣, we show that TLR2 is also induced by the anti-inflammatory glucocorticoids in cells where they also regulate MKP-1 mRNA and protein levels. TNF-␣ and glucocorticoids cooperate to regulate the TLR2 promoter, through the involvement of a 3 NF-B site, a STAT-binding element, and a 3 glucocorticoid response element (GRE). Molecular studies show that the IB␣ superrepressor or a STAT dominant negative element prevented TNF-␣ and dexamethasone stimulation of TLR2 promoter. Similarly, an AF-1 deletion mutant of glucocorticoid receptor or ablation of a putative GRE notably reduced the cooperative regulation of TLR2. Using chromatin immunoprecipitation assays, we demonstrate that all three transcription factors interact with both endogenous and transfected TLR2 promoters after stimulation by TNF-␣ and dexamethasone. Together, these studies define novel signaling mechanism for these three transcription factors, with a profound impact on discrimination of innate and adaptive immune responses.
Liver X receptor (LXR) α and β are members of the nuclear receptor superfamily of ligand-activated transcription factors. Best known for triggering “reverse cholesterol transport” gene programs upon their activation by endogenous oxysterols, LXRs have recently also been implicated in regulation of innate immunity. In this study, we define a role for LXRs in regulation of pulmonary inflammation and host defense and identify the lung and neutrophil as novel in vivo targets for pharmacologic LXR activation. LXR is expressed in murine alveolar macrophages, alveolar epithelial type II cells, and neutrophils. Treatment of mice with TO-901317, a synthetic LXR agonist, reduces influx of neutrophils to the lung triggered by inhaled LPS, intratracheal KC chemokine, and intratracheal Klebsiella pneumoniae and impairs pulmonary host defense against this bacterium. Pharmacologic LXR activation selectively modulates airspace cytokine expression induced by both LPS and K. pneumoniae. Moreover, we report for the first time that LXR activation impairs neutrophil motility and identify inhibition of chemokine-induced RhoA activation as a putative underlying mechanism. Taken together, these data define a novel role for LXR in lung pathophysiology and neutrophil biology and identify pharmacologic activation of LXR as a potential tool for modulation of innate immunity in the lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.