A novel method to extend aromaticity by one benzene and two triazole rings was developed and optimized. This two-step route employs the copper-catalyzed azide-haloalkyne cycloaddition reaction of an ortho-bis(iodoacetylene) system and the subsequent intramolecular homocoupling fusion of the neighboring iodotriazoles, a process in which an additional benzene ring is formed. This versatile methodology allows one to extend the core size of chromophores and, consequently, to tune the material's properties.
Recently, a novel modular approach to octatriazole-derived phthalocyanines (Pcs; 1) was developed and optimized in our group; herein, the pool of the functional Pc materials was expanded for an additional candidate (2), a fused derivative of 1. Compared with 1, the aromaticity in 2 is extended by an additional four benzene and eight triazole rings and, in addition, the triazole units and the Pc core co-create four functional, in-plane cavities. Various methods to link the unsubstituted carbon atoms of the neighboring triazoles in 1 to afford atomically flat naphthalocyanine (Nc) analogs (2), containing eight fused triazole moieties, were studied. Several synthetic routes were designed, among them the trisubstituted-triazole approach, which was found to be the most suitable route. The crucial steps of this approach, the copper-catalyzed azide-haloalkyne cycloaddition and the intramolecular homocoupling reactions, were first studied on a model system; subsequently, this methodology was applied in the synthesis of the desired Nc 2. The increased core size and the π-electron deficient structure predict this class of Ncs to possess very strong aggregation properties. Moreover, owing to the presence of four tridentate half-cavities, the final properties of the molecule or the assembly can, in principle, be further tuned by doping with metals or guest molecules.
Reactive surfactants (surfmers), which are covalently attached to the surface of sub-micron sized polymer particles during emulsion polymerisation, are applied to tailor the surface functionality of polymer particles for an application of choice. We present a systematic study on the use of oligoglycidol-functionalised styrene macromolecules as surfmers in the emulsion polymerization of styrene. Firstly, we report the impact of the surfmer concentration on the particle size for polymerisations performed above and below the critical micelle concentration. Secondly, we report the influence of the oligoglycidol chain length on the particle size. Thirdly, we conducted experiments to analyse the influence of the surfmer concentration and its chain length on the colloidal stability of the aqueous polystyrene nanoparticles in sodium chloride solutions. We demonstrated that the size of polystyrene particles could be influenced by changing both the surfmer concentration and its chain length. Furthermore, we showed that the colloidal stability of the oligoglycidol-functionalized polystyrene particles is dependent on the particle size, and not directly related to the oligoglycidol chain length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.