Nature carefully designs the components of amphiphile-composed monolayer and bilayer membranes to deliver specific functions. The compositions of these interfacial layered structures are so delicate that minute modifications can result in huge changes in function. Great efforts have been expended to understand membrane physical properties, with only minimum attention given to associated chemical properties. Here we report the first examples of the delicate chemistry associated with membrane amphiphilic components by studying OH mediated oxidation of six different unsaturated lipids/surfactants and their mixtures at the air-water interface using field-induced droplet ionization mass spectrometry (FIDI-MS). When the packing is loose or perturbed to be loose by other components or prior chemical modification, the double bond is oxidized without cleavage by adding oxygen functionality. In contrast, compact packing results in double bond cleavage through a Criegee intermediate mechanism. We postulate that constrained environments imposed by lipid packing limit the conformations of the reaction intermediates, controlling reaction pathways.
Hydrogen cyanide is considered as an important precursor to amino acids and nucleic acids, and its polymers could have profound implications on prebiotic chemistry. Several structures of HCN polymers are speculated, but these structures are disparate both chemically as well as structurally. Here, we employ solution-state NMR spectroscopy to investigate the structure of HCN polymers with (13)C and (15)N isotopic enrichment. From the multinuclear and multidimensional NMR investigations, we identify some discrete structural units for the most concentrated small molecular components and suggest that the dominating polymers are polyimine chain-like structures, which are formed by base-catalyzed nucleophilic addition reactions.
The ubiquity of oleic acid (OA) renders it a poster child for laboratory investigations of environmental oxidation chemistry. In the current study, mechanistic details of the oxidation of OA by hydroxyl radicals at the air-water interface are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Products from OH oxidation of both unsaturated and saturated carbon atoms are identified, and mechanisms for both types of oxidation processes are proposed. Uptake of oxygen in the interfacial layer increases linearly with time, consistent with Langmuir-Hinshelwood reaction kinetics. These results provide fundamental knowledge relating to OH initiated degradation of fatty acids in atmospheric aerosols.
Titan, the largest moon of Saturn, is enveloped in a reddish brown organic haze. Titan haze is presumed to be formed from methane and nitrogen (CH(4) and N(2)) in Titan's upper atmosphere through energetic photochemistry and particle bombardment. Though Titan haze has been directly investigated using methods including the Cassini mission, its formation mechanism and the contributing chemical structures and prebiotic potential are still not well developed. We report here the structural investigation of the (13)C and (15)N labeled, simulated Titan haze aerosol (tholin) by solution-state NMR. The one-dimensional (1)H, (13)C, and (15)N NMR spectra and decoupling experiments indicate that the tholin sample contains amine, nitrile, imine, and N-heteroaromatic compounds of tremendous import in understanding complex organic chemistry in anaerobic, extraterrestrial environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.