Functional amyloid materials can combine the selfassembly of peptide scaffolds into amyloid fibrils with binding capacities for ions or compounds of pharmaceutical interest, endowed by mutable non-β-sheet-forming residues at the termini. Herein, we report the first to our knowledge amyloid materials, encompassing a GAIIG amyloidogenic core, which bind to Alzheimer's disease (AD) drugs, by mimicking the mechanism by which the same AD drugs bind to enzymes according to experimentally resolved structures, including the target enzyme acetylcholinesterase (AChE). The computationally designed amyloid scaffolds are experimentally shown to coordinate with AD drugs, using two techniques, both in dilute solutions and at higher peptide concentrations, with a higher binding capacity for donepezil and tacrine compared to that for memantine and galantamine. The binding for some of the AD drugs is strong and stable even after extensive subsequent aqueous washings, denoting high capturing efficiency by the designed biomaterials, even after incubation under physiological conditions. Our findings constitute starting points to design novel drug delivery carriers binding to one or combinations of AD drugs (e.g., NMDA and cholinesterase inhibitors).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.