Purpose of ReviewArboviruses, viruses transmitted by arthropods such as mosquitoes, ticks, sandflies, and fleas are a significant threat to public health because of their epidemic and zoonotic potential. The geographical distribution of mosquito-borne diseases such as West Nile (WN), Rift Valley fever (RVF), Dengue, Chikungunya, and Zika has expanded over the last decades. Countries of the Mediterranean and Black Sea regions are not spared. Outbreaks of WN are repeatedly reported in the Mediterranean basin. Human cases of RVF were reported at the southern borders of the Maghreb region. For this reason, establishing the basis for the research to understand the potential for the future emergence of these and other arboviruses and their expansion into new geographic areas became a public health priority. In this context, the European network “MediLabSecure” gathering laboratories in 19 non-EU countries from the Mediterranean and Black Sea regions seeks to improve the surveillance (of animals, humans, and vectors) by reinforcing capacity building and harmonizing national surveillance systems to address this important human and veterinary health issue. The aim of this review is to give an exhaustive overview of arboviruses and their vectors in the region.Recent FindingsThe data presented underline the importance of surveillance in the implementation of more adapted control strategies to combat vector-borne diseases. Partner laboratories within the MediLabSecure network present a wide range of infrastructures and have benefited from different training programs.SummaryAlthough reporting of arboviral presence is not carried out in a systematic manner, the expansion of the area where arboviruses are present cannot be disputed. This reinforces the need for increasing surveillance capacity building in this region to prevent future emergences.
Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
The gp63 encoding genes were characterized by PCR-RFLP in 35 isolates representative of the Leishmania donovani complex (L. infantum, L. donovani, L. archibaldi and L. chagasi), with special attention to Mediterranean L. infantum from different geographical origins, and in separate groups from Old World Leishmania (L. major, L. tropica and L. aethiopica). The aim was to evaluate how the possible selective pressure by the host on these important surface proteins would influence structuring of our sample. Comparison was carried out with the structure obtained (i) from reported isoenzyme data, characters supposed to vary neutrally, and (ii) from PCR-RFLP analysis of gp63 inter-genic regions, containing nontranslated spacers and regulatory genes. Polymorphism within the gp63-encoding region, was much higher than in gp63 inter-genic regions. In the gp63 intra-genic dendrogram, the 4 species of L. donovani complex were discriminated and quite distinct from outgroups. Within L. infantum, geographical structuring was observed and did not overlap with the structure built-up from isoenzymes and inter-genic data. These results support the idea of a strong host-selection on gp63, at vector level but most of all at vertebrate (human or dog) immunological level. Furthermore, they illustrate how the nature of genetic characters may influence the perception of population structuring.
The first outbreak of influenza A(H3N2) occurred in 1968 and caused the third flu pandemic of the 20th century. It has affected multiple countries over time. The best strategy to reduce the burden of influenza is through vaccination whose efficacy varies with respect to the circulating strains. This study was performed to better understand the molecular evolution of influenza A(H3N2) and assess vaccine efficacy in Cameroon. Complete sequences of three gene segments were obtained from 2014 to 2016 influenza seasons in Cameroon. Hemagglutinin (HA), Neuraminidase (NA) and matrix (M) genes of 35 A(H3N2) virus strains were amplified and sequenced. Predicted vaccine efficacy was measured using the Pepitope model. Phylogenetic analysis of the HA gene showed that all Cameroonian strains had evolved away from the 3C.1-A/Texas/50/2012-like clade. Globally, 2014 virus strains clustered with the 2015–2016 vaccine strain, 3C.3a-A/Switzerland/9715293/2013, whereas 2015 and 2016 virus strains clustered with the 2016–2017 vaccine strain, 3C.2a-A/HongKong/4801/2014. In order to determine the genotypic drug susceptibility to neuraminidase inhibitors and amantadine, the NA and M2 protein coding sequences were analyzed. There was no strain with characteristic mutation for resistance to neuraminidase inhibitors, per contra; all strains possessed the substitution S31N, peculiar of resistance to adamantanes. There was drift in influenza A(H3N2) dominant epitopes B (2014 and 2015) to epitopes A (2016) with a theoretical efficiency in vaccine ranging from low to moderate. The presence of several antigenic site mutations among H3N2 virus strains between 2014–2016 influenza seasons in Cameroon confirms the progressing evolution of circulating H3N2 strains.
Our results demonstrate that, from Madagascar to Senegal, the epidemiologic and virologic characteristics of influenza viruses are diverse in terms of spatiotemporal circulation of the different virus types, subtypes, and strains. Our data highlight the importance of country-specific surveillance and of data and virus sharing, and they provide a rational basis to aid policy makers to develop strategies, such as vaccination at the right moment and with the right formulation, aimed at reducing the disease burden in Africa and Madagascar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.