Background: Tumor cell binding to the microenvironment is regarded as the onset of therapeutic resistance, referred to as cell adhesion mediated drug resistance (CAM-DR). Here we elucidate whether CAM-DR occurs in ovarian cancer cells and contributes to still-existing cisplatin resistance. Methods: Cultivation of W1 and cisplatin-resistant W1CR human ovarian cancer cells on collagen-type I (COL1) was followed by whole genome arrays, MTT assays focusing cisplatin cytotoxicity, and AAS detection of intracellular platinum levels. Expression of cisplatin transporters Ctr1 and MRP2 was analyzed. Mechanistic insight was provided by lentiviral β1-integrin (ITGB1) knockdown, or inhibition of integrin-linked kinase (ILK). Results: EC50 values of cisplatin cytotoxicity increased twofold when W1 and W1CR cells were cultivated on COL1, associated with significantly diminished intracellular platinum levels. Transporter deregulation could not be detected at mRNA levels but appears partially responsible at protein levels. The ITGB1 knockdown confirms that CAM-DR follows a COL1/ITGB1 signaling axis in W1 cells; thus, a blockade of ILK re-sensitized W1 cells on COL1 for cisplatin. In contrast, CAM-DR adds to cisplatin resistance in W1CR cells independent of ITGB1. Conclusions: CAM-DR appears relevant for ovarian cancer cells, adding to existing genetic resistance and thus emerges as a target for sensitization strategies.
The microenvironment possesses a strong impact on the tumor chemoresistance when cells bind to components of the extracellular matrix. Here we elucidate the signaling pathways of cisplatin resistance in W1 ovarian cancer cells binding to collagen type 1 (COL1) and signaling interference with constitutive cisplatin resistance in W1CR cells to discover the targets for sensitization. Proteome kinase arrays and Western blots were used to identify the signaling components, their impact on cisplatin resistance was evaluated by inhibitory or knockdown approaches. W1 cell binding to COL1 upregulates integrin-associated signals via FAK/PRAS40/mTOR, confirmed by β1-integrin (ITGB1) knockdown. mTOR appears as key for resistance, its blockade reversed COL1 effects on W1 cell resistance completely. W1CR cells compensate ITGB1-knockdown by upregulation of discoidin domain receptor 1 (DDR1) as alternative COL1 sensor. COL1 binding via DDR1 activates the MAPK pathway, of which JNK1/2 appears critical for COL1-mediated resistance. JNK1/2 inhibition inverts COL1 effects in W1CR cells, whereas intrinsic cisplatin resistance remained unaffected. Remarkably, knockdown of HSP27, another downstream MAPK pathway component overcomes intrinsic resistance completely sensitizing W1CR cells to the level of W1 cells for cisplatin cytotoxicity. Our data confirm the independent regulation of matrix-induced and intrinsic chemoresistance in W1 ovarian cancer cells and offer novel targets for sensitization.
Resistance formation of tumors against chemotherapeutics is the major obstacle in clinical cancer therapy. Although low molecular weight heparin (LMWH) is an important component in oncology referring to guideline-based antithrombotic prophylaxis of tumor patients, a potential interference of LMWH with chemoresistance is unknown. We have recently shown that LMWH reverses the cisplatin resistance of A2780cis human ovarian cancer cells in vitro. Here we address the question whether this LMWH effect is also valid under in vivo conditions. Therefore, we established tumor xenografts of A2780 and cisplatin resistant A2780cis cells in nude mice and investigated the impact of daily tinzaparin applications (10 mg/kg BW) on anti-tumor activity of cisplatin (6 mg/kg BW, weekly) considering the tumor growth kinetics. Intratumoral platinum accumulation was detected by GF-AAS. Xenografts of A2780 and A2780cis cells strongly differed in cisplatin sensitivity. As an overall consideration, tinzaparin co-treatment affected the response to cisplatin of A2780cis, but not A2780 tumors in the later experimental time range. A subgroup analysis confirmed that initially smaller A2780cis tumors benefit from tinzaparin, but also small A2780 xenografts. Tinzaparin did not affect cisplatin accumulation in A2780cis xenografts, but strongly increased the platinum content in A2780, obviously related to morphological differences in both xenografts. Although we cannot directly confirm a return of A2780cis cisplatin resistance by tinzaparin, as shown in vitro, the present findings give reason to discuss heparin effects on cytostatic drug efficiency for small tumors and warrants further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.