Quinoline resistance in malaria is frequently compared with P-glycoprotein-mediated multidrug resistance (mdr) in mammalian cells. We have previously reported that nonylphenolethoxylates, such as NP30, are potential Plasmodium falciparum P-glycoprotein substrates and drug efflux inhibitors. We used in vitro assays to compare the ability of verapamil and NP30 to sensitize two parasite isolates to four quinolines: chloroquine (CQ), mefloquine (MF), quinine (QN), and quinidine (QD). NP30 was able to sensitize (reversal, >80%) P. falciparum to MF, QN, QD, and, to a lesser extent, CQ. The presence of 2 M verapamil had no effect on mefloquine resistance; however, the presence of verapamil modulated the activities of QN and QD in a manner parallel to that observed for CQ. Genetic analysis of putative quinoline resistance genes did not suggest an association between known point mutations in pfcrt and pfmdr1 and NP30 sensitization activity. We conclude that the sensitization action of NP30 is distinct both phenotypically and genotypically from that of verapamil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.