Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.
Study Design Experimental Study Objectives To characterize the specific hindlimb electromyographic (EMG) patterns in response to muscle stretch and to measure the applied forces during stretching in the rat model of moderate SCI. Setting Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA Methods Female Sprague Dawley rats (n=4) were instrumented for telemetry-based EMG recording (right Rectus Femoris and Biceps Femoris) and received a moderate T10 spinal cord injury (SCI). The major hindlimb muscle groups were stretched using our clinically modeled protocol. The EMG responses were recorded biweekly for 8 weeks. The forces applied during stretching were measured using a custom-designed glove. Locomotor function was assessed using the BBB Open Field Locomotor Scale, 3D kinematics and gait analysis. Results Three main EMG patterns in response to stretch were identified: clonic-like, air-stepping and spasms. Torques applied during stretching ranged from 0.8–6 N*cm, and did not change significantly over the weeks of stretching. Two stretching sessions a week did not result in a significant disruption to locomotor function. Conclusions Stretching evokes EMG patterns in rats similar to those reported in humans including clonus and spasms. The torques used during stretching are comparable, based on the ratio of torque to body weight, to the few previously published studies that measured the forces and/or torques applied by physical therapists when stretching patients. Future studies are warranted to fully explore the impact of muscle stretch on spinal cord function after injury. Sponsorship DoD, KSCHIRT, NIH
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.