Abstract:We report on a micro-dispensing system for 6,13-Bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) to enable homogenous crystallization and uniform film morphology of the dispensed droplets using a two-solvent mixture along with the use of an insulating binder. This solution composition results in a controlled evaporation of the droplet in ambient air such that the Marangoni flow counteracts the outward convective flow to enable uniform radial crystal growth from the edge towards the center of the drops. The consequence of this process is the high degree of uniformity in the crystallization of the drops, which results in a reduction in the performance spread of the organic field effect transistors (OFET) created using this process. The addition of the insulating binder further improves the reduction in the spread of the results as a trade-off to the reduction in mobility of the transistors. The transfer curves of the OFETs show a tight grouping due to the controlled self-alignment of the TIPS-pentacene crystals; this repeatability was further highlighted by fabricating p-type inverters with driver to load ratios of 8:1, wherein the output inverter curves were also grouped tightly while exhibiting a gain of greater than 4 in the switching region. Therefore, the reliability and repeatability of this process justifies its use to enable large area solution-processed printed circuits at the cost of reduced mobility.
OPEN ACCESSElectronics 2015, 4 566
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.