CYP3A proteins comprise a significant portion of the hepatic cytochrome P450 (CYP) protein and they metabolize around 50% of drugs currently in use. The dissection of the individual contributions of the four CYP3A genes identified in humans to overall hepatic CYP3A activity has been hampered by sequence and functional similarities. We have investigated the expression of CYP3A5 and its genetic determinants in a panel of 183 Caucasian liver samples. CYP3A5 expression is increased in 10% of livers in this ethnic group. Using a high density map of CYP3A5 variants, we searched for genetic markers of the increased CYP3A5 expression. In agreement with an independent, recent study, we report that a SNP within intron 3 (g.6986G>A) is the primary cause of the CYP3A5 protein polymorphism. The frequencies of the g.6986A variant which allow for normal splicing of CYP3A5 transcripts are 5% in Caucasians, 29% in Japanese, 27% in Chinese, 30% in Koreans and 73% in African-Americans. In the last ethnic group, the expression of CYP3A5 in some individuals who carry the g.6986A variant is affected adversely by a frame shift mutation (CYP3A5*7, D348., q = 0.10). In summary, these results should add to efforts to identify clinically relevant, CYP3A5-specific reactions and to further elucidate traits responsible for variable expression of the entire CYP3A family.
We investigated the elimination routes for the 200 drugs that are sold most often by prescription count in the United States. The majority (78%) of the hepatically cleared drugs were found to be subject to oxidative metabolism via cytochromes P450 of the families 1, 2 and 3, with major contributions from CYP3A4/5 (37% of drugs) followed by CYP2C9 (17%), CYP2D6 (15%), CYP2C19 (10%), CYP1A2 (9%), CYP2C8 (6%), and CYP2B6 (4%). Clinically well-established polymorphic CYPs (i.e., CYP2C9, CYP2C19, and CYP2D6) were involved in the metabolism of approximately half of those drugs, including (in particular) NSAIDs metabolized mainly by CYP2C9, proton-pump inhibitors metabolized by CYP2C19, and beta blockers and several antipsychotics and antidepressants metabolized by CYP2D6. In this review, we provide an up-to-date summary of the functional polymorphisms and aspects of the functional genomics of the major human drug-metabolizing cytochrome P450s, as well as their clinical significance.
An important function of hepatocytes is the biotransformation and elimination of various drugs, many of which are organic cations and are taken up by organic cation transporters (OCTs) of the solute carrier family 22 (SLC22). Because interindividual variability of OCT expression may affect response to cationic drugs such as metformin, we systematically investigated genetic and nongenetic factors of OCT1/SLC22A1 and OCT3/SLC22A3 expression in human liver. OCT1 and OCT3 expression (messenger RNA [mRNA], protein) was analyzed in liver tissue samples from 150 Caucasian subjects. Hepatic OCTs were localized by way of immunofluorescence microscopy. Matrixassisted laser desorption/ionization time-of-flight mass spectrometry and genome-wide singlenucleotide polymorphism microarray technology served to genotype 92 variants in the SLC22A1-A3/ OCT1-3 gene cluster. Transport of metformin by recombinant human OCT1 and OCT3 was compared using transfected cells. OCT1 mRNA and protein expression varied 113-and 83-fold, respectively; OCT3 mRNA expression varied 27-fold. OCT1 transcript levels were on average 15-fold higher compared with OCT3. We localized the OCT3 protein to the basolateral hepatocyte membrane and identified metformin as an OCT3 substrate. OCT1 and OCT3 expression are independent of age and sex but were significantly reduced in liver donors diagnosed as cholestatic (P < 0.01). Several haplotypes for OCT1 and OCT3 were identified. Multivariate analysis adjusted for multiple testing showed that only the OCT1-Arg61Cys variant (rs12208357) strongly correlated with decreased OCT1 protein expression (P < 0.0001), and four variants in OCT3 (rs2292334, rs2048327, rs1810126, rs3088442) were associated with reduced OCT3 mRNA levels (P ؍ 0.03). Conclusion: We identified cholestasis and genetic variants as critical determinants for considerable interindividual variability of hepatic OCT1 and OCT3 expression. This indicates consequences for hepatic elimination of and response to OCT substrates such as metformin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.