Familial hypomagnesemia is a rare human disorder caused by renal or intestinal magnesium (Mg(2+)) wasting, which may lead to symptoms of Mg(2+) depletion such as tetany, seizures, and cardiac arrhythmias. Our knowledge of the physiology of Mg(2+) (re)absorption, particularly the luminal uptake of Mg(2+) along the nephron, has benefitted from positional cloning approaches in families with Mg(2+) reabsorption disorders; however, basolateral Mg(2+) transport and its regulation are still poorly understood. Here, by using a candidate screening approach, we identified CNNM2 as a gene involved in renal Mg(2+) handling in patients of two unrelated families with unexplained dominant hypomagnesemia. In the kidney, CNNM2 was predominantly found along the basolateral membrane of distal tubular segments involved in Mg(2+) reabsorption. The basolateral localization of endogenous and recombinant CNNM2 was confirmed in epithelial kidney cell lines. Electrophysiological analysis showed that CNNM2 mediated Mg(2+)-sensitive Na(+) currents that were significantly diminished in mutant protein and were blocked by increased extracellular Mg(2+) concentrations. Our data support the findings of a recent genome-wide association study showing the CNNM2 locus to be associated with serum Mg(2+) concentrations. The mutations found in CNNM2, its observed sensitivity to extracellular Mg(2+), and its basolateral localization signify a critical role for CNNM2 in epithelial Mg(2+) transport.
Background: Mutations in CNNM2 cause severe dominant hypomagnesemia. Results: Structure of CNNM2 consists of an extracellular N terminus and intracellular C terminus containing CBS domains, which are affected by the identified mutations. Conclusion: CNNM2 is intensively processed before being expressed in its final structure at the plasma membrane. Significance: CNNM2 structure analysis will aid to elucidate CNNM2 function in renal magnesium transport.
Claudin-16 (CLDN16) is critical for renal paracellular epithelial transport of Ca(2+) and Mg(2+) in the thick ascending loop of Henle. To gain novel insights into the role of CLDN16 in renal Ca(2+) and Mg(2+) homeostasis and the pathological mechanisms underlying a human disease associated with CLDN16 dysfunction [familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), OMIM 248250], we generated a mouse model of CLDN16 deficiency. Similar to patients, CLDN16-deficient mice displayed hypercalciuria and hypomagnesemia. Contrary to FHHNC patients, nephrocalcinosis was absent in our model, indicating the existence of compensatory pathways in ion handling in this model. In line with the renal loss of Ca(2+), compensatory mechanisms like parathyroid hormone and 1,25(OH)(2)D(3) were significantly elevated. Also, gene expression profiling revealed transcriptional upregulation of several Ca(2+) and Mg(2+) transport systems including Trpv5, Trpm6, and calbindin-D9k. Induced gene expression was also seen for the transcripts of two putative Mg(2+) transport proteins, Cnnm2 and Atp13a4. Moreover, urinary pH was significantly lower when compared with wild-type mice. Taken together, our findings demonstrate that loss of CLDN16 activity leads to specific alterations in Ca(2+) and Mg(2+) homeostasis and that CLDN16-deficient mice represent a useful model to further elucidate pathways involved in renal Ca(2+) and Mg(2+) handling.
Multiple sclerosis (MS) is a chronic neuro-inflammatory disorder, which is marked by the invasion of the central nervous system by monocyte-derived macrophages and autoreactive T cells across the brain vasculature. Data from experimental animal models recently implied that the passage of leukocytes across the brain vasculature is preceded by their traversal across the blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus. The correlation between the presence of leukocytes in the CSF of patients suffering from MS and the number of inflammatory lesions as detected by magnetic resonance imaging suggests that inflammation at the choroid plexus contributes to the disease, although in a yet unknown fashion. We here provide first insights into the involvement of the choroid plexus in the onset and severity of the disease and in particular address the role of the tight junction protein claudin-3 (CLDN3) in this process. Detailed analysis of human post-mortem brain tissue revealed a selective loss of CLDN3 at the choroid plexus in MS patients compared to control tissues. Importantly, mice that lack CLDN3 have an impaired BCSFB and experience a more rapid onset and exacerbated clinical signs of experimental autoimmune encephalomyelitis, which coincides with enhanced levels of infiltrated leukocytes in their CSF. Together, this study highlights a profound role for the choroid plexus in the pathogenesis of multiple sclerosis, and implies that CLDN3 may be regarded as a crucial and novel determinant of BCSFB integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.