Understanding the ecological impacts of climate change is a crucial challenge of the twenty-first century. There is a clear lack of general rules regarding the impacts of global warming on biota. Here, we present a metaanalysis of the effect of climate change on body size of ectothermic aquatic organisms (bacteria, phyto-and zooplankton, and fish) from the community to the individual level. Using long-term surveys, experimental data and published results, we show a significant increase in the proportion of small-sized species and young age classes and a decrease in size-at-age. These results are in accordance with the ecological rules dealing with the temperature-size relationships (i.e., Bergmann's rule, James' rule and Temperature-Size Rule). Our study provides evidence that reduced body size is the third universal ecological response to global warming in aquatic systems besides the shift of species ranges toward higher altitudes and latitudes and the seasonal shifts in life cycle events.biological scale ͉ body size ͉ climate change ͉ ectotherms ͉ metaanalysis
In this article, we show by mesocosm experiments that winter and spring warming will lead to substantial changes in the spring bloom of phytoplankton. The timing of the spring bloom shows only little response to warming as such, while light appears to play a more important role in its initiation. The daily light dose needed for the start of the phytoplankton spring bloom in our experiments agrees well with a recently published critical light intensity found in a field survey of the North Atlantic (around 1.3 mol photons m À2 day À1 ). Experimental temperature elevation had a strong effect on phytoplankton peak biomass (decreasing with temperature), mean cell size (decreasing with temperature) and on the share of microplankton diatoms (decreasing with temperature). All these changes will lead to poorer feeding conditions for copepod zooplankton and, thus, to a less efficient energy transfer from primary to fish production under a warmer climate.
An indoor mesocosm system was set up to study the response of phytoplankton and zooplankton spring succession to winter and spring warming of sea surface temperatures. The experimental temperature regimes consisted of the decadal average of the Kiel Bight, Baltic Sea, and three elevated regimes with 2°C, 4°C, and 6°C temperature difference from that at baseline. While the peak of the phytoplankton spring bloom was accelerated only weakly by increasing temperatures (1.4 days per degree Celsius), the subsequent biomass minimum of phytoplankton was accelerated more strongly (4.25 days per degree Celsius). Phytoplankton size structure showed a pronounced response to warming, with large phytoplankton being more dominant in the cooler mesocosms. The first seasonal ciliate peak was accelerated by 2.1 days per degree Celsius and the second one by 2.0 days per degree Celsius. The overwintering copepod populations declined faster in the warmer mesocosm, and the appearance of nauplii was strongly accelerated by temperature (9.2 days per degree Celsius). The strong difference between the acceleration of the phytoplankton peak and the acceleration of the nauplii could be one of the ''Achilles heels'' of pelagic systems subject to climate change, because nauplii are the most starvation-sensitive life cycle stage of copepods and the most important food item of first-feeding fish larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.