Approximately 20% of patients with myeloproliferative neoplasms (MPNs) harbor mutations in the gene calreticulin (CALR), with 80% of those mutations classified as either type 1 or type 2. While type 2 CALR mutant proteins retain many of the Ca2+ binding sites present in the wild type protein, type 1 CALR mutant proteins lose these residues. The functional consequences of this differential loss of Ca2+ binding sites remain yet unexplored. Here, we show that the loss of Ca2+ binding residues in the type 1 mutant CALR protein directly impairs its Ca2+ binding ability, which in turn leads to depleted endoplasmic reticulum (ER) Ca2+ and subsequent activation of the IRE1a/XBP1 pathway of the unfolded protein response. Genetic or pharmacological inhibition of IRE1a/XBP1 signaling induces cell death only in type 1 mutant but not type 2 mutant or wild type CALR-expressing cells, and abrogates type 1 mutant CALR-driven MPN disease progression in vivo.
BackgroundCystinuria is caused by the defective renal reabsorption of cystine and dibasic amino acids, and results in cystine stone formation. So far, mutations in two genes have been identified as causative. The SLC3A1/rBAT gene encodes the heavy subunit of the heterodimeric rBAT-b0,+AT transporter, whereas the light chain is encoded by the SLC7A9/ b0,+AT gene. In nearly 85% of patients mutations in both genes are detectable, but a significant number of patients currently remains without a molecular diagnosis. Thus, the existence of a further cystinuria gene had been suggested, and the recently identified AGT1/SLC7A13 represents the long-postulated partner of rBAT and third cystinuria candidate gene.MethodsWe screened a cohort of 17 cystinuria patients for SLC7A13 variants which were negative for SLC3A1 and SLC7A9 mutations.ResultsDespite strong evidences for an involvement of SLC7A13 mutations in cystinuria, we could not confirm a relevant role of SLC7A13 for the disease.ConclusionWith the exclusion of SLC7A13/AGT1 as the third cystinuria gene accounting for the SLC3A1 and SLC7A9 mutation negative cases, it becomes obvious that other genetic factors should be responsible for the cystinuria phenotype in nearly 15% of patients.
Lipocalin 2 (LCN2), a proinflammatory mediator, is involved in the pathogenesis of myeloproliferative neoplasms (MPN). Here, we investigated the molecular mechanisms of LCN2 overexpression in MPN. LCN2 mRNA expression was 20-fold upregulated in peripheral blood (PB) mononuclear cells of chronic myeloid leukemia (CML) and myelofibrosis (MF) patients vs. healthy controls. In addition, LCN2 serum levels were significantly increased in polycythemia vera (PV) and MF and positively correlated with JAK2V617F and mutated CALR allele burden and neutrophil counts. Mechanistically, we identified endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) as a main driver of LCN2 expression in BCR-ABL- and JAK2V617F-positive 32D cells. The UPR inducer thapsigargin increased LCN2 expression >100-fold, and this was not affected by kinase inhibition of BCR-ABL or JAK2V617F. Interestingly, inhibition of the UPR regulators inositol-requiring enzyme 1 (IRE1) and c-Jun N-terminal kinase (JNK) significantly reduced thapsigargin-induced LCN2 RNA and protein expression, and luciferase promoter assays identified nuclear factor kappa B (NF-κB) and CCAAT binding protein (C/EBP) as critical regulators of mLCN2 transcription. In conclusion, the IRE1–JNK-NF-κB–C/EBP axis is a major driver of LCN2 expression in MPN, and targeting UPR and LCN2 may represent a promising novel therapeutic approach in MPN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.