One of the main concerns about the commercial release of transgenic crops is the likelihood of transgene spread from cultivated species into wild relatives. This question is relevant for oilseed rape/canola (Brassica napus, AACC, 2n=38), as this species is partially allogamous with several wild relatives that are often sympatric with oilseed rape production. A workshop sponsored by the European Science Foundation (11-13 June 2001, Rennes, France) was held: (i) to identify the main weeds present in European and North American countries; (ii) to review results on the ability of oilseed rape to hybridize and backcross with wild relatives; (iii) to review the usefulness and limitations of the tools available for monitoring interspecific hybridization and gene introgression; and (iv) to provide recent results on modelling of gene flow.
BackgroundFor assessing the risk of escape of transgenes from cultivation, the persistence of feral populations of crop plants is an important aspect. Feral populations of oilseed rape, Brassica napus, are well known, but only scarce information is available on their population dynamics, particularly in Central Europe. To investigate genetic diversity, origin and persistence of feral oilseed rape in Austria, we compared variation at nine polymorphic microsatellite loci in eight feral populations with 19 commercial varieties.ResultsOverall, commercial varieties and feral populations showed a similar pattern of genetic variation and a similar level of observed heterozygosity. The two groups, however, shared less than 50% of the alleles and no multilocus genotype. A significant among-group (commercial varieties versus feral populations) component of genetic variation was observed (AMOVA: FCT = 0.132). Pairwise comparisons between varieties and feral populations showed moderate to very high genetic differentiation (FST = 0.209 - 0.900). The software STRUCTURE also demonstrated a clear separation between commercial varieties and feral samples: out of 17 identified genetic clusters, only one comprised plants from both a commercial variety and feral sites.ConclusionsThe results suggest that feral oilseed rape is able to maintain persistent populations. The feral populations may have derived from older cultivars that were not included in our analyses or perhaps have already hybridised with related crops or wild relatives. Feral populations therefore have to be considered in ecological risk assessment and future coexistence measures as a potential hybridisation partner of transgenic oilseed rape.
The occurrence of volunteer maize plants in subsequent crops as well as of feral maize plants in non-agricultural areas is an essential issue in risk assessments of genetically modified (GM) maize, with regard to possible contamination of natural habitats with GM material and as contribution to the total adventitious GM content of the non-GM final product. The appearance of feral maize plants has been confirmed for non-agricultural habitats in European areas with Mediterranean climate such as Spain. However, the existence of maize volunteers and feral maize outside cultivation under Central European continental climatic conditions is considered to be extremely unlikely in those winter-cold areas. Here, field observations during 5 years (2007, 2008, 2010, 2011 and 2015) in Austria are presented that confirm the occurrence of volunteer and feral maize under Central European climatic conditions. Most of these plants produced fertile inflorescences with viable pollen and fully developed cobs. Maize kernels may reach the soil by disintegration of cobs due to disease, using crushed maize cobs for game-feeding, left overs in manure dispersed during fertilisation or from transporting and handling of crushed cobs. The evidence of volunteer and feral maize in four Federal States in Austria (Burgenland, Lower Austria, Upper Austria, Styria) emphasises the necessity to consider these hitherto under-emphasised factors in an ecological risk assessment (ERA) of GM maize as a possible source for transgenes in non-agricultural habitats, because these plants could act as bridge for the spread of GM material into semi-natural habitats. In accordance with the European Food Safety Authority (EFSA), which states that in principle maize has the potential to survive as a volunteer or feral plant also in regions with cold winters, the investigation of the frequency of their occurrence under Central European conditions should be part of future monitoring programmes in order to assess their potential for permitting transgene spread.
Seed spillage during handling and transportation promotes establishment and invasion of feral crops into adjacent semi-natural habitats. This is also the case for oilseed rape (OSR, Brassica napus), where seed spillage may lead to establishment of herbicide resistant OSR populations in countries without cultivation of genetically modified OSR. Using data from Austria-where cultivation and import of genetically modified OSR are banned-as a prime example, we demonstrate that ports, oil mills, switchyards, and border railway stations to countries with different electric current systems-where trains have to stop-are the sites of primary concern with respect to seed spillage. Based on the results of the Austrian case study we discuss common measures to limit crop seed spillage which include intensified controls at border railway stations and the mode of seed packing during transportation. We further recommend sufficient cleaning both of goods wagons and of loading areas of trucks and ships as well as an appropriate weed management.Keywords: oilseed rape, transport, seed spillage, feral crop, invasion, mitigation measures, risk assessment, AustriaSeeds of arable crops are regularly spilled during transport and handling activities. These incidents cause intense management efforts and additional costs (Yoshimura et al., 2006). Moreover, the origin and establishment of feral populations along transportation routes contribute to the uncertainty concerning containment of genetically modified (GM) crops outside fields and could therefore interfere with a successful weed management. Here, we focus on oilseed rape (OSR, Brassica napus), a frequently spilled crop (Von der Lippe and Kowarik, 2007) with GM lines already in use, to identify spillage hot-spots due to transportation and handling, allowing us to develop perspectives on common management approaches.Spillage of OSR seeds has intensively been studied worldwide (e.g., Schafer et al., 2011), which makes OSR a primary model system in this context. We chose Austria as study region because this small country is situated in the center of Europe rendering it a nodal point for traffic and international goods carriage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.