Immune thrombocytopenia (ITP) is a bleeding disorder caused by IgG autoantibodies (AAbs) directed against platelets (PLTs). IgG effector functions depend on their Fc-constant region which undergoes posttranslational glycosylation. We investigated the role of Asn279-linked N-glycan of AAbs in vitro and in vivo. AAbs were purified from ITP patients (n=15) and N-glycans were enzymatically cleaved by endoglycosidase F. The effects of native AAbs and deglycosylated AAbs were compared in vitro on enhancement of phagocytosis of platelets by monocytes and complement fixation and activation applying flow cytometry, laser scanning microscopy, and a complement consumption assay. AAb-induced platelet phagocytosis was inhibited by N-glycan cleavage (median phagocytic activity: 8% vs 0.8%, p=0.004). Seven out of 15 native AAbs bound C1q and activated complement. N-glycan cleavage significantly reduced both effects. In vivo survival of human PLTs was assessed after co-transfusion with native or N-glycan cleaved AAbs in a NOD/SCID mouse model. Injection of AAbs resulted in rapid clearance of human platelets compared to control (platelet clearance after 5h (CL(5h))75% vs 30%, p<0.001). AAbs that were able to activate complement induced more pronounced platelet clearance in the presence of complement compared to the clearance in the absence of complement (CL(5h) 82% vs 62%, p=0.003). AAbs lost their ability to destroy platelets in vivo after deglycosylation (CL(5h) 42%, p<0.001). N-glycosylation of human ITP AAbs appears to be required for platelet phagocytosis and complement activation, reducing platelet survival in vivo. Posttranslational modification of AAbs may constitute an important determinant for the clinical manifestation of ITP.
Introduction Immune thrombocytopenia (ITP) is a bleeding disorder caused by IgG autoantibodies (AAbs) directed against platelets. The IgG effector functions of autoantibodies depend on their Fc-constant region which undergoes posttranslational glycosylation. We investigated the role of Asn279-linked N-glycan of AAbs in vitro and in vivo. Material and Methods AAbs were purified from ITP patients (n=15) and controls (n=10) and N-glycans were enzymatically cleaved by endoglycosidase F. The effects of native AAbs and deglycosylated AAbs (deAAbs) were compared in vitro on enhancement of phagocytosis of platelets by monocytes and complement fixation and activation applying flow cytometry, laser scanning microscopy, and a complement consumption assay. The capability of AAbs and deAAbs to eliminate human platelets in vivo was studied in a NOD/SCID mouse model in presence and absence of a complement source. Results AAb-induced platelet phagocytosis was inhibited by N-glycan cleavage (median phagocytic activity: 8% vs. 0.8%, p=0.004). Seven out of 15 native AAbs bound C1q and induced complement consumption. N-glycan cleavage significantly reduced C1q binding (MFI 16.4 vs. 4.9, p=0.017) and complement consumption. In vivo survival of human PLTs was assessed after cotransfusion with native or deAAbs in NOD/SCID mice. Injection of AAbs resulted in rapid clearance of human platelets compared to control (platelet clearance after 5h (CL5h) 75% vs. 30%, p<0.001). AAbs that were able to activate complement induced more pronounced platelet clearance in the presence of complement compared to the clearance in the absence of complement (CL5h 82% vs. 62%, p=0.003). AAbs lost their ability to destroy platelets in vivo after deglycosylation (CL5h42%, p<0.001). Conclusion Removal of N-glycan from AAbs interferes with Fc-mediated phagocytosis and complement activation and thereby prolongs platelet survival in vivo. Our study provides tools for better characterizing ITP AAbs and sheds light on the heterogeneity of AAbs in ITP. Clinical studies should aim to assess such additional characteristics, since this could lead to the identification of ITP patient subgroups with increased responses to specific or new interventions such as, targetting complement factors. Disclosures: No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.