Why some invasive plant species transmogrify from weak competitors at home to strong competitors abroad remains one of the most elusive questions in ecology. Some evidence suggests that disproportionately high densities of some invaders are due to the release of biochemicals that are novel, and therefore harmful, to naive organisms in their new range. So far, such evidence has been restricted to the direct phytotoxic effects of plants on other plants. Here we found that one of North America's most aggressive invaders of undisturbed forest understories, Alliaria petiolata (garlic mustard) and a plant that inhibits mycorrhizal fungal mutualists of North American native plants, has far stronger inhibitory effects on mycorrhizas in invaded North American soils than on mycorrhizas in European soils where A. petiolata is native. This antifungal effect appears to be due to specific flavonoid fractions in A. petiolata extracts. Furthermore, we found that suppression of North American mycorrhizal fungi by A. petiolata corresponds with severe inhibition of North American plant species that rely on these fungi, whereas congeneric European plants are weakly affected. These results indicate that phytochemicals, benign to resistant mycorrhizal symbionts in the home range, may be lethal to naïve native mutualists in the introduced range and indirectly suppress the plants that rely on them.
The Evolution of Increased Competitive Ability (EICA) hypothesis posits that invasive plants in introduced habitats with reduced herbivore pressure will evolve reduced levels of costly resistance traits. In light of this hypothesis, we examined the constitutive and inducible expression of five chemical defense traits in Alliaria petiolata from four invasive North American and seven native European populations. When grown under common conditions, significant variation among populations within continents was found for trypsin inhibitors and peroxidase activity, and glucosinolates and trypsin inhibitors were significantly jasmonate-inducible across populations. Across populations, constitutive levels of glucosinolates and trypsin inhibitors were negatively correlated with their degree of induction, with three North American populations tending to have lower constitutive levels and higher inducibility of glucosinolates than the seven European populations. Alliarinoside and isovitexin 6"-O-beta-glucopyranoside levels were both higher in North American plants than in European plants, but levels of these compounds were generally increased by jasmonate in European plants and decreased by the same treatment in North American plants. Aside from the tendency for invasive populations to have reduced constitutive glucosinolate levels coupled with increased inducibility, little support for the predictions of EICA was evident in the chemical defenses that we studied.
The allelopathic potential of the Eurasian invasive plant Alliaria petiolata has been well documented, with the bulk of the effects believed to be mediated by arbuscular mycorrhizal fungi (AMF). We exposed the herbaceous annual Impatiens pallida, which is native to North America, to fractionated A. petiolata extracts at four developmental stages (germination, presymbiosis growth, symbiosis formation, and symbiosis growth) by using exposure levels expected to be similar to field levels. Surprisingly, we found strong direct effects on I. pallida germination and growth, but no indirect effects on I. pallida growth mediated by AMF. We also observed strong synergistic effects with a complete A. petiolata extract that inhibited I. pallida germination and presymbiosis root growth more than either a glucosinolate or flavonoid enriched fraction alone. In fact, the flavonoid enriched fraction tended to stimulate germination and presymbiosis root growth. In contrast to these strong direct effects, I. pallida plant growth during both the symbiosis formation and symbiosis growth phases was unaffected by A. petiolata extracts. We also found no inhibition of AMF colonization of roots or soils by A. petiolata extracts. We show that AMF can actually ameliorate allelopathic effects of an invasive plant, and suggest that previously observed allelopathic effects of A. petiolata may be due to direct inhibition of plant and fungal growth before symbiosis formation.
Despite their economic and ecological importance, defense responses of conifers to pests are little understood. In a 3-year experiment, we monitored systemic fungal (Diplodia pinea)- and insect (Neodiprion sertifer)-induced defense protein activities and total soluble proteins in needles and phloem of Austrian pine (Pinus nigra) across a soil fertility gradient. In both years, total soluble protein content of foliage and phloem declined with increasing fertility across induction treatments, while defensive protein activities generally increased with increasing fertility. In 2005, total soluble protein content in branch phloem was increased by fungal inoculation of the stem. Peroxidase activity was suppressed in needles by insect defoliation in 2006, while polyphenol oxidase activity was systemically induced in branch phloem by insect attack in 2005. Trypsin inhibitor activities in phloem did not respond to any induction or fertility treatment. Nutritive quality of Austrian pine tissue declined with increasing fertility, while several protein-based defenses simultaneously increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.