We construct a real-time dataset (FRED-SD) with vintage data for the U.S. states that can be used to forecast both state-level and national-level variables. Our dataset includes approximately 28 variables per state, including labor market, production, and housing variables. We conduct two sets of real-time forecasting exercises. The …rst forecasts state-level labor-market variables using …ve di¤erent models and di¤erent levels of industrially-disaggregated data. The second forecasts a national-level variable exploiting the cross-section of state data. The state-forecasting experiments suggest that large models with industrially-disaggregated data tend to have higher predictive ability for industrially-diversi…ed states. For national-level data, we …nd that forecasting and aggregating state-level data can outperform a random walk but not an autoregression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.