With the discovery of the persistent jets of water being ejected to space from Enceladus, an understanding of the effect of the space environment on potential organisms and biosignatures in them is necessary for planning life detection missions. We experimentally determine the survivability of microbial cells in liquid medium when ejected into vacuum. Epifluorescence microscopy, using a lipid stain, and SEM imaging were used to interrogate the cellular integrity of E. coli after ejected through a pressurized nozzle into a vacuum chamber. The experimental samples showed a 94% decrease in visible intact E. coli cells but showed a fluorescence residue in the shape of the sublimated droplets that indicated the presence of lipids. The differences in the experimental conditions versus those expected on Enceladus should not change the analog value because the process a sample would undergo when ejected into space was representative. E. coli was selected for testing although other cell types could vary physiologically which would affect their response to a vacuum environment. More testing is needed to determine the dynamic range in concentration of cells expected to survive the plume environment. However, these results suggest that lipids may be directly detectable evidence of life in icy world plumes.
Biomarkers collected from past and present life on Earth are a central guide in the development of flight-ready technologies designed to search for life on other planets and moons. Data from numerous laboratory and field studies have revealed the importance of incorporating capabilities that minimize the risk of false negatives or false positives during life detection missions. Biomolecules are the most unambiguous and information-rich of all known biosignatures. Indeed, the identification in a sample of biopolymers akin to DNA, RNA or proteins, would be difficult to refute as a successful life detection experiment. In the case of Mars, the search for biomolecules is inescapable, but few technological solutions exist for in situ identification. Thus, our work has focused on the development of technologies designed to detect biochemical polyelectrolyte molecules, which have been argued to be a universal signature for life due to their ability to store information while reducing their tendency to adopt complex tertiary structures that would prohibit their replication. To that end we have developed a solid-state nanopore device that has the ability to detect electrically charged organic polymers, such as those found in deoxyribonucleic acid. Our nanopore technology, when used as a biosensor, consists of two or three ion-filled chambers separated by voltage-biased thin layer (Figure 1). Nanopores are milled into the thin layer, allowing the chambers to be connected electrically via an ionic solution. Polyelectrolytes are introduced into one of the chambers, and a patch clamp amplifier is connected to the chip via electrodes that serve as a voltage source and an ammeter. When a voltage is applied across the membrane, the ionic current going only through this pore is measured. The polyelectrolytes are captured by the electric field in the pore, then and electrophoretically drawn through the nanopore (translocation) causing the nanopore conductance to decrease. This conductance decrease, or transient current blockage, is evaluated for: 1) mean blockage current (which is caused by the physical passage of the polyelectrolyte through the nanopore, and is measured by a sensitive ammeter in pA); 2) translocation duration (physical time of the translocation, for DNA this is typically 30 bases per second when translocation is controlled by a molecular motor [1]); and 3) integrated area of a blockage, revealing key features of the particle. Solid-state nanopore technology is being aggressively advanced for use as an electrochemistry sensor for a wide variety of biological molecules. Testing of the solid-state nanopore membranes includes the establishment of criteria used to distinguish informational from non-informational output signals. Our work highlights past, current, and future efforts in the development of solid-state nanopore technology for life detection. References: Deamer, D., M. Akeson, and D. Branton, Three decades of nanopore sequencing. Nature biotechnology, 2016. 34(5): p. 518. Acknowledgements: This project is supported by the NASA Research Opportunities in Space and Earth Sciences Program’s Concepts for Ocean worlds Life Detection Technology, Solicitation: NNH16ZDA001N-CLDTCH and the W.M. Keck Center for Nanoscale Optofluidics at UC Santa Cruz. Figure 1. The microfluidic chip with an integrated solid-state nanopore. (a) The Z-shaped microfluidic channel is shown in blue. Three fluidic reservoirs are used for buffer and analyte introduction into the microfluidic channel, with the nanopore integrated beneath the central chamber (number 2). During the experiment, analyte solution is introduced into the central chamber and voltage is applied across the microfluidic channel and nanopore. (b) SEM cross-section of the microfluidic channel with the integrated micropore and nanopore in the top layers of the chip. (c) Photograph of the assembled device. Figure 1
Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.