Wound healing is compromised in aging adults in part due to decreased responsiveness of fibroblasts to extracellular signals. However, the cellular mechanisms underlying this phenomenon are not known. Aged dermal fibroblasts with reduced remaining replicative capacities demonstrated decreased epidermal growth factor (EGF)-induced cell migrative and cell proliferative capacities, as reported previously. Thus, as cells approach senescence, programmed in vivo or in vitro, EGF responsiveness is preferentially lost. To define the rate-limiting signaling event, we found that the activity of two different EGF receptor (EGFR)-signaling pathways to cell migration (phospholipase-C ␥) and/or mitogenesis (extracellular signal/regulated-mitogen-activated kinases) were decreased in near senescent cells despite unchanged levels of effector molecules. Aged cells presented decreased levels of EGFR, although insulin receptor and transferrin receptor levels were relatively unchanged. EGFR mRNA levels and production of new transcripts decreased during aging, suggesting that this preferential loss of EGFR was due to diminished production, which more than counteracts the reduced ligand-induced receptor loss. Since these data suggested that the decrement in EGF was rate-limiting, higher levels of EGFR were established in near senescent cells by electroporation of EGFR cDNA. These cells presented higher levels of EGFR and recovered their EGF-induced migration and proliferation responsiveness. Thus, the defect in EGF responsiveness of aged dermal fibroblasts is secondary to reduced EGFR message transcription. Our experimental model suggests that EGFR gene delivery might be an effective future therapy for compromised wound healing.
Chemokines constitute a superfamily of proteins that function as chemoattractants and activators of leukocytes. Astrocytes, the major glial cell type in the CNS, are a source of chemokines within the diseased brain. Specifically, we have shown that primary human astrocytes and human astroglioma cell lines produce the CXC chemokines IFN-γ-inducible protein-10 and IL-8 and the CC chemokines monocyte chemoattractant protein-1 and RANTES in response to stimuli such as TNF-α, IL-1β, and IFN-γ. In this study, we investigated chemokine receptor expression and function on human astroglioma cells. Enhancement of CXC chemokine receptor 4 (CXCR4) mRNA expression was observed upon treatment with the cytokines TNF-α and IL-1β. The peak of CXCR4 expression in response to TNF-α and IL-1β was 8 and 4 h, respectively. CXCR4 protein expression was also enhanced upon treatment with TNF-α and IL-1β (2- to 3-fold). To study the functional relevance of CXCR4 expression, stable astroglioma transfectants expressing high levels of CXCR4 were generated. Stimulation of cells with the ligand for CXCR4, stromal cell-derived factor-1α (SDF-1α), resulted in an elevation in intracellular Ca2+ concentration and activation of the mitogen-activated protein kinase cascade, specifically, extracellular signal-regulated kinase 2 (ERK2) mitogen-activated protein kinase. Of most interest, SDF-1α treatment induced expression of the chemokines monocyte chemoattractant protein-1, IL-8, and IFN-γ-inducible protein-10. SDF-1α-induced chemokine expression was abrogated upon inclusion of U0126, a pharmacological inhibitor of ERK1/2, indicating that the ERK signaling cascade is involved in this response. Collectively, these data suggest that CXCR4-mediated signaling pathways in astroglioma cells may be another mechanism for these cells to express chemokines involved in angiogenesis and inflammation.
ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer’s disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1β and IL-1α protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1α and IL-1β expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation.
Rat calcium-modulating cyclophilin ligand (CAML) cDNA was cloned and sequenced. It has a predicted open reading frame of 294 amino acids. The CAML gene is highly conserved throughout species, showing 85, 89 and 69% amino acid sequence identity to the human, mouse, and chicken genes, respectively. Gene expression data using astrocytes, microglia and neurons show that CAML mRNA and protein is constitutively expressed in these cell types of the central nervous system. The cloning of rat CAML will facilitate further investigations on the function of this molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.