In approximately 3.2% of bird species individuals regularly forgo the opportunity to breed independently and instead breed cooperatively with other conspeci¢cs, either as non-reproductive`helpers' or as co-breeders. The traditional explanation for cooperative breeding is that the opportunities for breeding independently are limited owing to peculiar features of the species' breeding ecology. However, it has proved remarkably di¤cult to ¢nd any common ecological correlates of cooperative breeding in birds. This di¤culty has led to the`life history hypothesis', which suggests that the common feature of cooperatively breeding birds is their great longevity, rather than any particular feature of their breeding ecology. Here, we use a comparative method to test the life history hypothesis by looking for correlations between life history variation and variation in the frequency of cooperative breeding. First, we ¢nd that cooperative breeding in birds is not randomly distributed, but concentrated in certain families, thus supporting the idea that there may be a common basis to cooperative breeding in birds. Second, increases in the level of cooperative breeding are strongly associated with decreases in annual adult mortality and modal clutch size. Third, the proportion of cooperatively breeding species per family is correlated with a low family-typical value of annual mortality, suggesting that low mortality predisposes cooperative breeding rather than vice versa. Finally, the low rate of mortality typically found in cooperatively breeding species is associated with increasing sedentariness, lower latitudes, and decreased environmental £uctuation. We suggest that low annual mortality is the key factor that predisposes avian lineages to cooperative breeding, then ecological changes, such as becoming sedentary, further slow population turnover and reduce opportunities for independent breeding. As the traditional explanation suggests, the breeding habitat of cooperatively breeding species is saturated, but this saturation is not owing to any peculiar feature of the breeding ecology of cooperative breeders. Rather, the saturation arises because the local population turnover in these species is unusually slow, as predicted by the life history hypothesis.
Molecular techniques have revealed striking variation among bird species in the rates of extra-pair paternity (EPP) and intraspeci c brood parasitism (IBP). In terms of the proportion of broods affected, rates of EPP and IBP vary across species from 0-95% and 0-50%, respectively. Despite a plethora of hypotheses and several careful comparative analyses, few robust correlates of this interspeci c variation have been identi ed. One explanation for this shortfall is that most comparative studies have tended to focus on contemporary ecological factors and ignored fundamental differences in reproductive biology that evolved millions of years ago. We show that, for both EPP and IBP, over 50% of interspeci c variation is due to differences among taxonomic families and orders. Therefore, we test hypotheses that predict interspeci c variation in the rate of alternative reproductive strategies should be associated with differences in life history and the form of parental care. Our analyses largely support these predictions, with high rates of reproductive cheating being associated with 'fast' life histories. High EPP rates are associated with high rates of adult mortality and reduced paternal care. High IBP rates are associated with high-fecundity rates. These patterns remain intact whether we use species as independent data points or evolutionary contrasts based on either molecular or morphological phylogenies. These results are interpreted as supporting the idea that alternative reproductive strategies are most common in taxa in which the risks of retaliation are low. We suggest a hierarchical explanation for interspeci c variation in the incidence of alternative reproductive strategies. Variation between major avian lineages in the EPP and IBP rates are determined by fundamental differences in life history and parental care that evolved many millions of years ago. Variation between populations or individuals of the same species, however, are more likely to be determined by differences in contemporary ecological and genetic factors.
Global pharmaceutical consumption is rising with the growing and ageing human population and more intensive food production. Recent studies have revealed pharmaceutical residues in a wide range of ecosystems and organisms. Environmental concentrations are often low, but pharmaceuticals typically are designed to have biological effects at low doses, acting on physiological systems that can be evolutionarily conserved across taxa. This Theme Issue introduces the latest research investigating the risks of environmentally relevant concentrations of pharmaceuticals to vertebrate wildlife. We take a holistic, global view of environmental exposure to pharmaceuticals encompassing terrestrial, freshwater and marine ecosystems in high- and low-income countries. Based on both field and laboratory data, the evidence for and relevance of changes to physiology and behaviour, in addition to mortality and reproductive effects, are examined in terms of the population- and community-level consequences of pharmaceutical exposure on wildlife. Studies on uptake, trophic transfer and indirect effects of pharmaceuticals acting via food webs are presented. Given the logistical and ethical complexities of research in this area, several papers focus on techniques for prioritizing which compounds are most likely to harm wildlife and how modelling approaches can make predictions about the bioavailability, metabolism and toxicity of pharmaceuticals in non-target species. This Theme Issue aims to help clarify the uncertainties, highlight opportunities and inform ongoing scientific and policy debates on the impacts of pharmaceuticals in the environment.
Early nutrition has recently been shown to have pervasive, downstream effects on adult life-history parameters including lifespan, but the underlying mechanisms remain poorly understood. Damage to biomolecules caused by oxidants, such as free radicals generated during metabolic processes, is widely recognized as a key contributor to somatic degeneration and the rate of ageing. Lipophilic antioxidants (carotenoids, vitamins A and E) are an important component of vertebrate defences against such damage. By using an avian model, we show here that independent of later nutrition, individuals experiencing a short period of low-quality nutrition during the nestling period had a twofold reduction in plasma levels of these antioxidants at adulthood. We found no effects on adult external morphology or sexual attractiveness: in matechoice trials females did not discriminate between adult males that had received standard-or lower-quality diet as neonates. Our results suggest low-quality neonatal nutrition resulted in a long-term impairment in the capacity to assimilate dietary antioxidants, thereby setting up a need to trade off the requirement for antioxidant activity against the need to maintain morphological development and sexual attractiveness. Such state-dependent trade-offs could underpin the link between early nutrition and senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.