The Coronavirus disease 2019 (COVID-19) pandemic has altered how medical education is delivered, worldwide. Didactic sessions have transitioned to electronic/online platforms and clinical teaching opportunities are limited. These changes will affect how radiology is taught to medical students at both the pre-clerkship (ie, year 1 and 2) and clinical (ie, year 3 and 4) levels. In the pre-clerkship learning environment, medical students are typically exposed to radiology through didactic lectures, integrated anatomy laboratories, case-based learning, and ultrasound clinical skills sessions. In the clinical learning environment, medical students primarily shadow radiologists and radiology residents and attend radiology resident teaching sessions. These formats of radiology education, which have been the tenets of the specialty, pose significant challenges during the pandemic. This article reviews how undergraduate radiology education is affected by COVID-19 and explores solutions for teaching and learning based on e-learning and blended learning theory.
Background Radiology integration into medical anatomy courses is well established, but there is a paucity of literature on integrating virtual dissection into cadaveric dissection laboratories. Virtual dissection is the digital dissection of medical images on touchscreen anatomy visualization tables. The purpose of this pilot study was to investigate the feasibility of integrating virtual dissection into a first-year medical cadaver-based anatomy course and to assess students’ overall attitude towards this new technology. Methods All students in first-year medicine at a single medical school participated in this study (n = 292). Six virtual dissection laboratories, which focused on normal anatomy, were developed and integrated into a cadaver-based anatomy course. The virtual dissection table (VDT) was also integrated into the final anatomy spot exam. Following the course, students completed a short evidence-informed survey which was developed using a theoretical framework for curriculum evaluation. Numerical data were tabulated, and qualitative content analysis was performed on students’ unstructured comments. Results The survey response rate was 69.2% (n = 202/292). Most (78.7%) students reported that virtual dissection enhanced their understanding of the cadaveric anatomy and the clinical applications of anatomy. Most (73.8%) students also felt that the VDT was an effective use of the laboratory time. Thirteen narrative comments were collected, most of which (61.5%) identified strengths of the curriculum. Conclusions In this pilot study, students perceived that their learning was enhanced when virtual dissection was combined with a cadaver-based anatomy laboratory. This study demonstrates that there is potential for virtual dissection to augment cadaveric dissection in medical education.
Evaluation of the nontraumatic acute abdomen with multidetector CT has long been accepted and validated as the reference standard in the acute setting. Dual-energy CT has emerged as a promising tool, with multiple clinical applications in abdominal imaging already demonstrated. With its ability to allow characterization of materials on the basis of their differential attenuation when imaged at two different energy levels, dual-energy CT can help identify the composition of internal body constituents. Therefore, it is possible to selectively identify iodine to assess the enhancement pattern of an organ, including the identification of hyperenhancement in cases of inflammatory processes, or ischemic changes secondary to vascular compromise. Quantification of iodine uptake with contrast material-enhanced dual-energy CT is also possible, and this quantification has been suggested to be useful in differentiating inflammatory from neoplastic conditions. Dual-energy CT can help determine the composition of gallstones and urolithiasis and can be used to accurately differentiate uric acid urinary calculi from non-uric acid urinary calculi. Moreover, dual-energy CT is capable of substantially reducing artifacts caused by metallic prostheses, to improve the imaging evaluation of abdominopelvic organs. The possibility of creating virtual nonenhanced images in the evaluation of acute aortic syndrome, gastrointestinal hemorrhage and is chemia, or pancreatic pathologic conditions substantially reduces the radiation dose delivered to the patient, by eliminating a true nonenhanced acquisition. Finally, by increasing the iodine conspicuity, contrast-enhanced dual-energy CT can render an area of free active extravasation or endoleak more visible, compared with conventional single-energy CT. This article reviews the basics of dual-energy CT and highlights its main clinical applications in evaluation of the nontraumatic acute abdomen. ©
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.