The efficacy of pre- and postexposure treatment with the antiviral compound (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) was tested against simian immunodeficiency virus (SIV) in macaques as a model for human immunodeficiency virus (HIV). PMPA was administered subcutaneously once daily beginning either 48 hours before, 4 hours after, or 24 hours after virus inoculation. Treatment continued for 4 weeks and the virologic, immunologic, and clinical status of the macaques was monitored for up to 56 weeks. PMPA prevented SIV infection in all macaques without toxicity, whereas all control macaques became infected. These results suggest a potential role for PMPA prophylaxis against early HIV infection in cases of known exposure.
The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1-S2 junctional region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell-cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.
(R)-9-(2-Phosphonylmethoxypropyl)adenine (PMPA), an acyclic nucleoside phosphonate analog, is one of a new class of potent antiretroviral agents. Previously, we showed that PMPA treatment for 28 days prevented establishment of persistent simian immunodeficiency virus (SIV) infection in macaques even when therapy was initiated 24 h after intravenous virus inoculation. In the present study, we tested regimens involving different intervals between intravenous inoculation with SIV and initiation of PMPA treatment, as well as different durations of treatment, for the ability to prevent establishment of persistent infection. Twenty-four cynomolgus macaques (Macaca fascicularis) were studied for 46 weeks after inoculation with SIV. All mock-treated control macaques showed evidence of productive infection within 2 weeks postinoculation (p.i.). All macaques that were treated with PMPA for 28 days beginning 24 h p.i. showed no evidence of viral replication following discontinuation of PMPA treatment. However, extending the time to initiation of treatment from 24 to 48 or 72 h p.i. or decreasing the duration of treatment reduced effectiveness in preventing establishment of persistent infection. Only half of the macaques treated for 10 days, and none of those treated for 3 days, were completely protected when treatment was initiated at 24 h. Despite the reduced efficacy of delayed and shortened treatment, all PMPA-treated macaques that were not protected showed delays in the onset of cell-associated and plasma viremia and antibody responses compared with mock controls. These results clearly show that both the time between virus exposure and initiation of PMPA treatment as well as the duration of treatment are crucial factors for prevention of acute SIV infection in the macaque model.
Current recombinant human immunodeficiency virus (HIV) gp120 protein vaccine candidates are unable to elicit antibodies capable of neutralizing infectivity of primary isolates from patients. Here, "fusion-competent" HIV vaccine immunogens were generated that capture the transient envelope-CD4-coreceptor structures that arise during HIV binding and fusion. In a transgenic mouse immunization model, these formaldehyde-fixed whole-cell vaccines elicited antibodies capable of neutralizing infectivity of 23 of 24 primary HIV isolates from diverse geographic locations and genetic clades A to E. Development of these fusion-dependent immunogens may lead to a broadly effective HIV vaccine.
The envelope glycoprotein complex (gp120-gp41) of human immunodeficiency virus type 1 (HIV-1) promotes the fusion of viral and cellular membranes through formation of the fusion-active six-helix bundle in the gp41 ectodomain. This gp41 core structure consists of three C-terminal helices packed in an antiparallel manner into hydrophobic grooves on the surface of the N-terminal trimeric coiled coil. Alanine mutations that destabilize the N-and C-terminal interhelical packing interactions also reduce viral infectivity. Here we show that viruses bearing these mutations exhibit a marked potentiation of inhibition by peptides that make up the gp41 core. By contrast, these viruses are unchanged in their sensitivities to soluble CD4, the CXCR4 coreceptor ligand SDF-1␣, and human anti-HIV immunoglobulin, reagents that impact the initial, receptor-induced conformational changes in the envelope glycoprotein. Our results support the notion that these alanine mutations specifically affect the conformational transition to the fusion-active gp41 structure. The mutations also increase viral sensitivity to the gp41-directed monoclonal antibody 2F5, suggesting that this broadly neutralizing antibody may also interfere with this transition. The conformational activation of the HIV-1 envelope glycoprotein likely represents a viable target for vaccine and antiviral drug development.The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) mediates viral entry by promoting the fusion of viral and cellular membranes. On the virion surface, the envelope glycoprotein complex exists as an oligomeric spike comprising the receptor-binding subunit gp120, which is anchored to the viral membrane through a noncovalent association with the transmembrane subunit gp41 (for a review, see reference 32). Considerable evidence indicates that HIV-1 membrane fusion requires a series of conformational changes in gp41. Numerous studies lead to the following working model for envelope glycoprotein-mediated membrane fusion (for a review, see reference 13 and references therein) (Fig. 1A). The native form of gp41 on the surface of the virus is stabilized by interactions with gp120, which are altered upon the binding of gp120 to CD4 and a coreceptor. The prehairpin intermediate of gp41 is subsequently formed by folding of the N-terminal trimeric coiled coil, leading to the insertion of the N-terminal hydrophobic fusion-peptide region into the target membrane. This prehairpin intermediate then collapses to form the sixhelix bundle structure in which the C-terminal regions pack into the hydrophobic grooves of the N-terminal coiled-coil trimer in an antiparallel manner. The formation of this trimerof-hairpins structure brings the viral and cellular membranes into close apposition. The free energy made available by the formation of this highly stable gp41 core is thought to contribute to overcoming the energy barrier to membrane fusion (e.g., 20).The crucial role of interhelical packing interactions between the N-and C-terminal regions of the gp41...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.