Purpose The purpose of this study was to evaluate accuracy and repeatability of T1 and T2 estimates of a Magnetic Resonance Fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. Methods The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T1, T2 and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T1 and T2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T1 and T2 values were compared to the values from the spin echo methods. The repeatability was characterized as the coefficient of variation (CV) of the measurements over 34 days. Results T1 and T2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R2 = 0.999 for T1, R2 = 0.996 for T2). The MRF estimates over the wide ranges of T1 and T2 values have less than 5% variation, except for the shortest T2 relaxation times where the method still maintains less than 8% variation. Conclusion MRF measurements of T1 and T2 are highly repeatable over time and across wide ranges of T1 and T2 values.
Summary Objective A relationship between T1ρ relaxation time and glycosaminoglycan (GAG) content has been demonstrated in chemically degraded bovine cartilage, but has not been demonstrated with quantitative biochemistry in human cartilage. A relationship has also been established between T2 relaxation time in cartilage and osteoarthritis severity. We hypothesized that T1ρ relaxation time would be associated with GAG content in human cartilage with normal T2 relaxation times. Methods T2 relaxation time, T1ρ relaxation time, and glycosaminoglycan as a percentage of wet weight (sGAG) were measured for top and bottom regions at seven anatomical locations in twenty-one human cadaver patellae. For our analysis, T2 relaxation time was classified as normal or elevated based on a threshold defined by the mean plus one standard deviation of the T2 relaxation time for all samples. Results In the normal T2 relaxation time subset, T1ρ relaxation time correlated with sGAG in the full-thickness and bottom regions, but only marginally in the top region alone. sGAG decreased significantly with age in all regions. Conclusion In the subset of cartilage specimens with normal T2 relaxation time, T1ρ relaxation time was inversely associated with sGAG content, as hypothesized. A predictive model, which accounts for T2 relaxation time and the effects of age, might be able to determine longitudinal trends in GAG content in the same person based on T1ρ relaxation time maps.
The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi‐institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application‐specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48–61, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
BackgroundT1 mapping and extracellular volume (ECV) have the potential to guide patient care and serve as surrogate end-points in clinical trials, but measurements differ between cardiovascular magnetic resonance (CMR) scanners and pulse sequences. To help deliver T1 mapping to global clinical care, we developed a phantom-based quality assurance (QA) system for verification of measurement stability over time at individual sites, with further aims of generalization of results across sites, vendor systems, software versions and imaging sequences. We thus created T1MES: The T1 Mapping and ECV Standardization Program.MethodsA design collaboration consisting of a specialist MRI small-medium enterprise, clinicians, physicists and national metrology institutes was formed. A phantom was designed covering clinically relevant ranges of T1 and T2 in blood and myocardium, pre and post-contrast, for 1.5 T and 3 T. Reproducible mass manufacture was established. The device received regulatory clearance by the Food and Drug Administration (FDA) and Conformité Européene (CE) marking.ResultsThe T1MES phantom is an agarose gel-based phantom using nickel chloride as the paramagnetic relaxation modifier. It was reproducibly specified and mass-produced with a rigorously repeatable process. Each phantom contains nine differently-doped agarose gel tubes embedded in a gel/beads matrix. Phantoms were free of air bubbles and susceptibility artifacts at both field strengths and T1 maps were free from off-resonance artifacts. The incorporation of high-density polyethylene beads in the main gel fill was effective at flattening the B1 field. T1 and T2 values measured in T1MES showed coefficients of variation of 1 % or less between repeat scans indicating good short-term reproducibility. Temperature dependency experiments confirmed that over the range 15–30 °C the short-T1 tubes were more stable with temperature than the long-T1 tubes. A batch of 69 phantoms was mass-produced with random sampling of ten of these showing coefficients of variations for T1 of 0.64 ± 0.45 % and 0.49 ± 0.34 % at 1.5 T and 3 T respectively.ConclusionThe T1MES program has developed a T1 mapping phantom to CE/FDA manufacturing standards. An initial 69 phantoms with a multi-vendor user manual are now being scanned fortnightly in centers worldwide. Future results will explore T1 mapping sequences, platform performance, stability and the potential for standardization.Electronic supplementary materialThe online version of this article (doi:10.1186/s12968-016-0280-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.