We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628The 1 is consistent with a power-law distribution of slopes~-2 and a truncation of a few times 10 5 M . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find massindependent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (10 4 M ) clusters, suggesting that a massdependent component is necessary to fully describe the YSC disruption process in NGC 628.Astrophysical Journal, 841:131 (26pp), 2017 June 1 https:
We present PHANGS–ALMA, the first survey to map CO J = 2 → 1 line emission at ∼1″ ∼100 pc spatial resolution from a representative sample of 90 nearby (d ≲ 20 Mpc) galaxies that lie on or near the z = 0 “main sequence” of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS–ALMA, each beam reaches the size of a typical individual giant molecular cloud, so that these data can be used to measure the demographics, life cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z = 0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, Atacama Large Millimeter/submillimeter Array (ALMA) observations, and characteristics of the delivered data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with MUSE on the Very Large Telescope, the Hubble Space Telescope, AstroSat, the Very Large Array, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle 5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1″ resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS–ALMA public data release.
The distribution of metals within a galaxy traces the baryon cycle and the buildup of galactic disks, but the detailed gas phase metallicity distribution remains poorly sampled. We have determined the gas phase oxygen abundances for 7,138 HII regions across the disks of eight nearby galaxies using VLT/MUSE optical integral field spectroscopy as part of the PHANGS-MUSE survey. After removing the first order radial gradients present in each galaxy, we look at the statistics of the metallicity offset (∆O/H) and explore azimuthal variations. Across each galaxy, we find low (σ=0.03-0.05 dex) scatter at any given radius, indicative of efficient mixing. We compare physical parameters for those HII regions that are 1σ outliers towards both enhanced and reduced abundances. Regions with enhanced abundances have high ionization parameter, higher Hα luminosity, lower Hα velocity dispersion, younger star clusters and associated molecular gas clouds show higher molecular gas densities. This indicates recent star formation has locally enriched the material. Regions with reduced abundances show increased Hα velocity dispersions, suggestive of mixing introducing more pristine material. We observe subtle azimuthal variations in half of the sample, but can not always cleanly associate this with the spiral pattern. Regions with enhanced and reduced abundances are found distributed throughout the disk, and in half of our galaxies we can identify subsections of spiral arms with clearly associated metallicity gradients. This suggests spiral arms play a role in organizing and mixing the ISM.
We present the PHANGS-MUSE survey, a programme that uses the MUSE integral field spectrograph at the ESO VLT to map 19 massive (9.4 < log(M⋆/M⊙)< 11.0) nearby (D ≲ 20 Mpc) star-forming disc galaxies. The survey consists of 168 MUSE pointings (1′ by 1′ each) and a total of nearly 15 × 106 spectra, covering ∼1.5 × 106 independent spectra. PHANGS-MUSE provides the first integral field spectrograph view of star formation across different local environments (including galaxy centres, bars, and spiral arms) in external galaxies at a median resolution of 50 pc, better than the mean inter-cloud distance in the ionised interstellar medium. This ‘cloud-scale’ resolution allows detailed demographics and characterisations of H II regions and other ionised nebulae. PHANGS-MUSE further delivers a unique view on the associated gas and stellar kinematics and provides constraints on the star-formation history. The PHANGS-MUSE survey is complemented by dedicated ALMA CO(2–1) and multi-band HST observations, therefore allowing us to probe the key stages of the star-formation process from molecular clouds to H II regions and star clusters. This paper describes the scientific motivation, sample selection, observational strategy, data reduction, and analysis process of the PHANGS-MUSE survey. We present our bespoke automated data-reduction framework, which is built on the reduction recipes provided by ESO but additionally allows for mosaicking and homogenisation of the point spread function. We further present a detailed quality assessment and a brief illustration of the potential scientific applications of the large set of PHANGS-MUSE data products generated by our data analysis framework. The data cubes and analysis data products described in this paper represent the basis for the first PHANGS-MUSE public data release and are available in the ESO archive and via the Canadian Astronomy Data Centre.
Using the PHANGS-ALMA CO(2-1) survey, we characterize molecular gas properties on ∼100 pc scales across 102,778 independent sightlines in 70 nearby galaxies. This yields the best synthetic view of molecular gas properties on cloud scales across the local star-forming galaxy population obtained to date. Consistent with previous studies, we observe a wide range of molecular gas surface densities (3.4 dex), velocity dispersions (1.7 dex), and turbulent pressures (6.5 dex) across the galaxies in our sample. Under simplifying assumptions about subresolution gas structure, the inferred virial parameters suggest that the kinetic energy of the molecular gas typically exceeds its self-gravitational binding energy at ∼100 pc scales by a modest factor (1.3 on average). We find that the cloud-scale surface density, velocity dispersion, and turbulent pressure (1) increase toward the inner parts of galaxies, (2) are exceptionally high in the centers of barred galaxies (where the gas also appears less gravitationally bound), and (3) are moderately higher in spiral arms than in inter-arm regions. The galaxy-wide averages of these gas properties also correlate with the integrated stellar mass, star formation rate, and offset from the star-forming main sequence of the host galaxies. These correlations persist even when we exclude regions with extraordinary gas properties in galaxy centers, which contribute significantly to the inter-galaxy variations. Our results provide key empirical constraints on the physical link between molecular cloud populations and their galactic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.