Hematopoietic ontogeny is characterized by distinct primitive and definitive erythroid lineages. Definitive erythroblasts mature and enucleate extravascularly and form a unique membrane skeleton, composed of spectrin, 4.1R-complex, and ankyrinR-complex components, to survive the vicissitudes of the adult circulation. However, little is known about the formation and composition of the membrane skeleton in primitive erythroblasts, which progressively mature while circulating in the embryonic bloodstream. We found that primary primitive erythroblasts express the major membrane skeleton genes present in similarly staged definitive erythroblasts, suggesting that the composition and formation of this membrane network is conserved in maturing primitive and definitive erythroblasts despite their respective intravascular and extravascular locations. Membrane deformability and stability of primitive erythroblasts, assayed by microfluidic studies and fluorescence imaged microdeformation, respectively, significantly increase prior to enucleation. These functional changes coincide with protein 4.1 R isoform switching and protein 4.1R-null primitive erythroblasts fail to establish normal membrane stability and deformability. We conclude that maturing primitive erythroblasts initially navigate the embryonic vasculature prior to establishing a deformable cytoskeleton, which is ultimately formed prior to enucleation. Formation of an erythroid-specific, protein 4.1R-dependent membrane skeleton is an important feature not only of definitive, but also of primitive, erythropoiesis in mammals.
Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.