The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.
Injury of skeletal muscle, and especially mechanically induced damage such as contusion injury, frequently occurs in contact sports, as well as in accidental contact sports, such as hockey and squash. The large variations with regard to injury severity and affected muscle group, as well as non-specificity of reported symptoms, complicate research aimed at finding suitable treatments. Therefore, in order to increase the chances of finding a successful treatment, it is important to understand the underlying mechanisms inherent to this type of skeletal muscle injury and the cellular processes involved in muscle healing following a contusion injury. Arguably the most important of these processes is inflammation since it is a consistent and lasting response. The inflammatory response is dependent on two factors, namely the extent of actual physical damage and the degree of muscle vascularization at the time of injury. However, long-term anti-inflammatory treatment is not necessarily effective in promoting healing, as indicated by various studies on NSAID treatment. Because of the factors named earlier, human studies on the inflammatory response to contusion injury are limited, but several experimental animal models have been designed to study muscle damage and regeneration. The early recovery phase is characterized by the overlapping processes of inflammation and occurrence of secondary damage. Although neutrophil infiltration has been named as a contributor to the latter, no clear evidence exists to support this claim. Macrophages, although forming part of the inflammatory response, have been shown to have a role in recovery, rather than in exacerbating secondary damage. Several probable roles for this cell type in the second phase of recovery, involving resolution processes, have been identified and include the following: (i) phagocytosis to remove cellular debris; (ii) switching from a pro- to anti-inflammatory phenotype in regenerating muscle; (iii) preventing muscle cells from undergoing apoptosis; (iv) releasing factors to promote muscle precursor cell activation and growth; and (v) secretion of cytokines and growth factors to facilitate vascular and muscle fibre repair. These many different roles suggest that a single treatment with one specific target cell population (e.g. neutrophils, macrophages or satellite cells) may not be equally effective in all phases of the post-injury response. To find the optimal targeted, but time-course-dependent, treatments requires substantial further investigations. However, the techniques currently used to induce mechanical injury vary considerably in terms of invasiveness, tools used to induce injury, muscle group selected for injury and contractile status of the muscle, all of which have an influence on the immune and/or cytokine responses. This makes interpretation of the complex responses more difficult. After our review of the literature, we propose that a standardized non-invasive contusion injury is the ideal model for investigations into the immune responses to mechani...
Skeletal muscle buffering capacity (beta m), enzyme activities and exercise performance were measured before and after 4 weeks of high-intensity, submaximal interval training (HIT) undertaken by six well-trained competitive cyclists [mean maximal oxygen consumption (VO2max) = 66.2 ml.kg-1.min-1]. HIT replaced a portion of habitual endurance training and consisted of six sessions, each of six to eight repetitions of 5 min duration at 80% of peak sustained power output (PPO) separated by 1 min of recovery. beta m increased from 206.6 (17.9) to 240.4 (34.1) mumol H+.g muscle dw-1.pH-1 after HIT (P = 0.05). PPO, time to fatigue at 150% PPO (TF150) and 40-km cycle time trial performance (TT40) all significantly improved after HIT (P < 0.05). In contrast, there was no change in the activity of either phosphofructokinase or citrate synthase. In addition, beta m correlated significantly with TT40 performance before HIT (r = -0.82, P < 0.05) and the relationship between change in beta m and change in TT40 was close to significance (r = -0.74). beta m did not correlate with TF150. These results indicate that beta m may be an important determinant of relatively short-duration (< 60 min) endurance cycling activity and responds positively to just six sessions of high-intensity, submaximal interval training.
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.