Continuous and intermittent exposure to noise elevates stress, increases blood pressure, and disrupts sleep among patients in hospital intensive care units. The purpose of this study was to determine the effectiveness of a behavior-based intervention to reduce noise and to identify determinants of noise in a medical intensive care unit. Staff were trained for six weeks to reduce noise during their activities in an effort to keep noise levels below 55 dBA during the day and below 50 dBA at night. One-min noise levels were logged continuously in patient rooms eight weeks before and after the intervention. Noise levels were compared by room position, occupancy status, and time of day. Noise levels from flagged days (>60 dBA for >10 hrs) were correlated with activity logs. The intervention was ineffective with noise frequently exceeding project goals during the day and night. Noise levels were higher in rooms with the oldest heating, ventilation, and air-conditioning system, even when patient rooms were unoccupied. Of the flagged days, the odds of noise over 60 dBA occurring was 5.3 higher when high-flow respiratory support devices were in use compared to times with low-flow devices in use (OR= 5.3, 95% CI = 5.0 - 5.5). General sources, like the heating, ventilation, and air-conditioning system, contribute to high baseline noise and high-volume (>10 L/min) respiratory-support devices generate additional high noise (>60 dBA) in Intensive Care Unit patient rooms. This work suggests that engineering controls (e.g., ventilation changes or equipment shielding) may be more effective in reducing noise in hospital intensive care units than behavior modification alone.
Theratyping charts patients' clinical response to different treatments on an individual basis. This overcomes the limitations of genotype being used to predict response to individual therapies and includes all patients regardless of mutation. The use of organoids in high throughput screening allows numerous compounds to be tested on patient-specific tissue preclinically. This could lead to the extension of theratyping beyond CFTR modulators.
Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 μm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selective and collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to detect Fe particles at mass per substrate loadings less than 2.5 μg effectively, it produced results similar to those using the ICP-MS at a mass per substrate loading greater than 2.5 μg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.