FMRI studies have revealed three scene-selective regions in human visual cortex (the Parahippocampal Place Area (PPA), Transverse Occipital Sulcus (TOS) and RetroSplenial Cortex (RSC)), which have been linked to higher-order functions such as navigation, scene perception/recognition, and contextual association. Here, we document corresponding (presumptively homologous) scene-selective regions in the awake macaque monkey, based on direct comparison to human maps, using identical stimuli and largely overlapping fMRI procedures. In humans, our results showed that the three scene-selective regions are centered near - but distinct from - the gyri/sulci for which they were originally named. In addition, all these regions are located within or adjacent to known retinotopic areas. Human RSC and PPA are located adjacent to the peripheral representation of primary and secondary visual cortex, respectively. Human TOS is located immediately anterior/ventral to retinotopic area V3A, within retinotopic regions LO-1, V3B, and/or V7. Mirroring the arrangement of human regions FFA and PPA (which are adjacent to each other in cortex), the presumptive monkey homologue of human PPA is located adjacent to the monkey homologue of human FFA, near the posterior superior temporal sulcus. Monkey TOS includes the region predicted from the human maps (macaque V4d), extending into retinotopically-defined V3A. A possible monkey homologue of human RSC lies in the medial bank, near peripheral V1. Overall, our findings suggest a homologous neural architecture for scene-selective regions in visual cortex of humans and non-human primates, analogous to the face-selective regions demonstrated earlier in these two species.
A visual brain area that is thought to encode higher-level "place" information responds instead to lower-level "edge" information. A corresponding brain area is demonstrated in non-human species.
An intriguing region of human visual cortex (the fusiform face area; FFA) responds selectively to faces as a general higher-order stimulus category. However, the potential role of lower-order stimulus properties in FFA remains incompletely understood. To clarify those lower-level influences, we measured FFA responses to independent variation in 4 lower-level stimulus dimensions using standardized face stimuli and functional Magnetic Resonance Imaging (fMRI). These dimensions were size, position, contrast, and rotation in depth (viewpoint). We found that FFA responses were strongly influenced by variations in each of these image dimensions; that is, FFA responses were not “invariant” to any of them. Moreover, all FFA response functions were highly correlated with V1 responses (r = 0.95–0.99). As in V1, FFA responses could be accurately modeled as a combination of responses to 1) local contrast plus 2) the cortical magnification factor. In some measurements (e.g., face size or a combinations of multiple cues), the lower-level variations dominated the range of FFA responses. Manipulation of lower-level stimulus parameters could even change the category preference of FFA from “face selective” to “object selective.” Altogether, these results emphasize that a significant portion of the FFA response reflects lower-level visual responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.