Pulmonary carcinoids are rare neuroendocrine tumors of the lung. The molecular alterations underlying the pathogenesis of these tumors have not been systematically studied so far. Here we perform gene copy number analysis (n=54), genome/exome (n=44) and transcriptome (n=69) sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodeling genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40% and 22.2% of the cases respectively, with MEN1, PSIP1 and ARID1A being recurrently affected. In contrast to small-cell lung cancer and large-cell neuroendocrine tumors, TP53 and RB1 mutations are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly aggressive lung neuroendocrine tumors but arise through independent cellular mechanisms. These data also suggest that inactivation of chromatin remodeling genes is sufficient to drive transformation in pulmonary carcinoids.
Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.
Mapping-by-sequencing (or SHOREmapping) has revitalized the powerful concept of forward genetic screens in plants. However, as in conventional genetic mapping approaches, mapping-by-sequencing requires phenotyping of mapping populations established from crosses between two diverged accessions. In addition to the segregation of the focal phenotype, this introduces natural phenotypic variation, which can interfere with the recognition of quantitative phenotypes. Here, we demonstrate how mapping-by-sequencing and candidate gene identification can be performed within the same genetic background using only mutagen-induced changes as segregating markers. Using a previously unknown suppressor of mutants of like heterochromatin protein1 (lhp1), which in its functional form is involved in chromatin-mediated gene repression, we identified three closely linked ethyl methanesulfonate-induced changes as putative candidates. In order to assess allele frequency differences between such closely linked mutations, we introduced deep candidate resequencing using the new Ion Torrent Personal Genome Machine sequencing platform to our mutant identification pipeline and thereby reduced the number of causal candidate mutations to only one. Genetic analysis of two independent additional alleles confirmed that this mutation was causal for the suppression of lhp1.
BackgroundCyanobacteria constitute a serious threat to freshwater ecosystems by producing toxic secondary metabolites, e.g. microcystins. These microcystins have been shown to harm livestock, pets and humans and to affect ecosystem service and functioning. Cyanobacterial blooms are increasing worldwide in intensity and frequency due to eutrophication and global warming. However, Daphnia, the main grazer of planktonic algae and cyanobacteria, has been shown to be able to suppress bloom-forming cyanobacteria and to adapt to cyanobacteria that produce microcystins. Since Daphnia’s genome was published only recently, it is now possible to elucidate the underlying molecular mechanisms of microcystin tolerance of Daphnia.ResultsDaphnia magna was fed with either a cyanobacterial strain that produces microcystins or its genetically engineered microcystin knock-out mutant. Thus, it was possible to distinguish between effects due to the ingestion of cyanobacteria and effects caused specifically by microcystins. By using RNAseq the differentially expressed genes between the different treatments were analyzed and affected KOG-categories were calculated. Here we show that the expression of transporter genes in Daphnia was regulated as a specific response to microcystins. Subsequent qPCR and dietary supplementation with pure microcystin confirmed that the regulation of transporter gene expression was correlated with the tolerance of several Daphnia clones.ConclusionsHere, we were able to identify new candidate genes that specifically respond to microcystins by separating cyanobacterial effects from microcystin effects. The involvement of these candidate genes in tolerance to microcystins was validated by correlating the difference in transporter gene expression with clonal tolerance. Thus, the prevention of microcystin uptake most probably constitutes a key mechanism in the development of tolerance and adaptation of Daphnia. With the availability of clear candidate genes, future investigations examining the process of local adaptation of Daphnia populations to microcystins are now possible.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-776) contains supplementary material, which is available to authorized users.
In mammals, exposure to toxic or disease-causing environments can change epigenetic marks that are inherited independently of the intrauterine environment. Such inheritance of molecular phenotypes may be adaptive. However, studies demonstrating molecular evidence for epigenetic inheritance have so far relied on extreme treatments, and are confined to inbred animals. We therefore investigated whether epigenomic changes could be detected after a non-drastic change in the environment of an outbred organism. We kept two populations of wild-caught house mice (Mus musculus domesticus) for several generations in semi-natural enclosures on either standard diet and light cycle, or on an energy-enriched diet with longer daylight to simulate summer. As epigenetic marker for active chromatin we quantified genome-wide histone-3 lysine-4 trimethylation (H3K4me3) from liver samples by chromatin immunoprecipitation and high-throughput sequencing as well as by quantitative polymerase chain reaction. The treatment caused a significant increase of H3K4me3 at metabolic genes such as lipid and cholesterol regulators, monooxygenases, and a bile acid transporter. In addition, genes involved in immune processes, cell cycle, and transcription and translation processes were also differently marked. When we transferred young mice of both populations to cages and bred them under standard conditions, most of the H3K4me3 differences were lost. The few loci with stable H3K4me3 changes did not cluster in metabolic functional categories. This is, to our knowledge, the first quantitative study of an epigenetic marker in an outbred mammalian organism. We demonstrate genome-wide epigenetic plasticity in response to a realistic environmental stimulus. In contrast to disease models, the bulk of the epigenomic changes we observed were not heritable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.