The aim of this study was to determine the extent of ankle muscle weakness in children with cerebral palsy (CP) and to identify potential causes. Maximal voluntary contractions of plantar (PF) and dorsiflexors (DF) were determined at optimal angles in knee flexion and extension in both legs of 14 children with hemiplegia (7 males, 7 females) and 14 with diplegia (8 males, 6 females). Their results were compared to 14 age- and weight-matched control participants (5 males, 9 females). Muscle cross-sectional areas of soleus, posterior, and anterior compartment muscles were determined from MRIs in 14 children with CP (eight diplegia, six hemiplegia) and 18 control children. Specific tension (torque/unit area) of PF and DF was determined from torque and cross-sectional area results. Muscle volumes of PF and DF were also determined in both legs of five control children and five with hemiplegia. Muscle EMG was recorded from soleus, medial gastrocnemius, and tibialis anterior during each maximal voluntary contraction. Mean amplitude was significantly reduced in PF and DF in both CP groups and significantly higher levels of coactivation of antagonists were found compared to control participants. Strength of PF and DF was significantly reduced in both CP groups, but more importantly the muscles were found to be weak based on significantly reduced specific tensions. The PF were most affected, particularly in the group with hemiplegia. It is believed that an inability to maximally activate their muscles contributed to this weakness. A combination of incomplete activation and high levels of PF coactivation are thought to have contributed to DF weakness.
The aim of this study was to determine the extent of ankle muscle weakness in children with cerebral palsy (CP) and to identify potential causes. Maximal voluntary contractions of plantar (PF) and dorsiflexors (DF) were determined at optimal angles in knee flexion and extension in both legs of 14 children with hemiplegia (7 males, 7 females) and 14 with diplegia (8 males, 6 females). Their results were compared to 14 age‐ and weight‐matched control participants (5 males, 9 females). Muscle cross‐sectional areas of soleus, posterior, and anterior compartment muscles were determined from MRIs in 14 children with CP (eight diplegia, six hemiplegia) and 18 control children. Specific tension (torque/unit area) of PF and DF was determined from torque and cross‐sectional area results. Muscle volumes of PF and DF were also determined in both legs of five control children and five with hemiplegia. Muscle EMG was recorded from soleus, medial gastrocnemius, and tibialis anterior during each maximal voluntary contraction. Mean amplitude was significantly reduced in PF and DF in both CP groups and significantly higher levels of coactivation of antagonists were found compared to control participants. Strength of PF and DF was significantly reduced in both CP groups, but more importantly the muscles were found to be weak based on significantly reduced specific tensions. The PF were most affected, particularly in the group with hemiplegia. It is believed that an inability to maximally activate their muscles contributed to this weakness. A combination of incomplete activation and high levels of PF coactivation are thought to have contributed to DF weakness.
The effect of biofeedback training on ankle function was studied in young children with cerebral palsy (CP) during a pilot study and a 6‐week follow‐up study. Patients underwent range of motion (ROM) and ankle dorsiflexor (DF) strength training in a laboratory 3 days per week, receiving auditory and visual feedback. An at‐home programme used portable EMG units to help train DF muscle recruitment on the remaining days. Independent outcome measures included DF strength, active ROM. and tapping ability pretraining and 6 weeks and 14 months posttraining. Tapping ability increased significantly in the trained leg posttraining. It then fell significantly at the 6‐weeks posttraining test, but remained significantly higher than pretest levels, and returned to pretraining levels by 14 months. Passive ROM was unchanged, but active ROM increased significantly in the trained leg. DF strength increased in most children posttraining in both the pilot and main study. Increased motor‐unit recruitment is believed to explain the increases in DF strength and active ROM. These results suggest that biofeedback training can improve ankle function, and the implications for gait are discussed.
A case of a rare giant cell lesion of a tarsal bone, giant cell reparative granuloma, is presented with CT correlation. CT is useful in pre-operative management both in defining the extent of involvement of adjacent structures and demonstrating soft tissue abnormality.
A rare, elusive, mobile, pedunculated nasopharyngeal tumor in a neonate is described. The child was only intermittently symptomatic and the diagnosis was not made until 1 month of age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.