Epidemiology formed the basis of 'the Barker hypothesis', the concept of 'developmental programming' and today's discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Heat stress significantly impairs reproduction of sheep, and under current climatic conditions is a significant risk to the efficiency of the meat and wool production, with the impact increasing as global temperatures rise. Evidence from field studies and studies conducted using environmental chambers demonstrate the effects of hot temperatures (≥ 32 °C) on components of ewe fertility (oestrus, fertilisation, embryo survival and lambing) are most destructive when experienced from 5 d before until 5 d after oestrus. Temperature controlled studies also demonstrate that ram fertility, as measured by rates of fertilisation and embryo survival, is reduced when mating occurs during the period 14 to 50 d post-heating. However, the contribution of the ram to heat induced reductions in flock fertility is difficult to determine accurately. Based primarily on temperature controlled studies, it is clear that sustained exposure to high temperatures (≥ 32 °C) during pregnancy reduces lamb birthweight and will, therefore, decrease lamb survival under field conditions. It is concluded that both ewe and ram reproduction is affected by relatively modest levels of heat stress (≥ 32 °C) and this is a concern given that a significant proportion of the global sheep population experiences heat stress of this magnitude around mating and during pregnancy. Despite this, strategies to limit the impacts of the climate on the homeothermy, behaviour, resource use and reproduction of extensively grazed sheep are limited, and there is an urgency to improve knowledge and to develop husbandry practices to limit these impacts.
After the embargo period via non-commercial hosting platforms such as their institutional repository via commercial sites with which Elsevier has an agreement In all cases accepted manuscripts should: link to the formal publication via its DOI bear a CC-BY-NC-ND license -this is easy to do, click here to find out how if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article
Placenta-derived hormones including growth hormone (GH) in humans contribute to maternal adaptation to pregnancy, and intermittent maternal GH administration increases foetal growth in several species. Both patterns and abundance of circulating GH are important for its activity, but their changes during pregnancy have only been reported in humans and rats. The aim of the present study was to characterise circulating profiles and secretory characteristics of GH in non-pregnant female mice and throughout murine pregnancy. Circulating GH concentrations were measured in whole blood (2 μL) collected every 10 min for 6 h in non-pregnant diestrus female C57Bl/6J mice (n = 9), and pregnant females at day 8.5–9.5 (early pregnancy, n = 8), day 12.5–13.5 (mid-pregnancy, n = 7) and day 17.5 after mating (late pregnancy, n = 7). Kinetics and secretory patterns of GH secretion were determined by deconvolution analysis, while orderliness and regularity of serial GH concentrations were calculated by approximate entropy analysis. Circulating GH was pulsatile in all groups. Mean circulating GH and total and basal GH secretion rates increased markedly from early to mid-pregnancy, and then remained elevated. Pulse frequency and pulsatile GH secretion rate were similar between groups. The irregularity of GH pulses was higher in all pregnant groups than that in non-pregnant mice. Increased circulating GH in murine pregnancy is consistent with an important role for this hormone in maternal adaptation to pregnancy and placental development. The timing of increased basal secretion from mid-pregnancy, concurrent with the formation of the chorioallantoic placenta and initiation of maternal blood flow through it, suggests regulation of pituitary secretion by placenta-derived factors.
Numerous epidemiological studies have related an increased risk of adult-onset cardiovascular and metabolic disease to an adverse intra-uterine environment at critical periods. We have shown that fetal sheep exposed to dexamethasone for only 2 days at 27 days of gestation (term approximately 150 days) became hypertensive adults, whereas those exposed at 64 days of gestation remained normotensive, as did controls. In the same sheep, now nearly 5 years old, we performed glucose tolerance tests and hyperinsulinaemic euglycaemic clamps to study the insulin sensitivity of glucose, amino acid and non-esterified fatty acid metabolism. Glucose tolerance, calculated as the area under the curve, after intravenous administration of bolus glucose and insulin secretion in response to a glucose challenge were not altered in any group. There were no significant differences in the insulin sensitivity of net whole-body glucose or amino acid uptake. However, suppression of lipolysis by insulin, measured as the proportional decrease in the circulating concentration of non-esterified fatty acids during the hyperinsulinaemic clamp, was 69+/-1.2% at steady-state plasma insulin levels ( approximately 1000 m-units/l) in the group exposed to dexamethasone at 27 days of gestation, but only 50.8+/-6.5% in the controls (P<0.05). In the group exposed to dexamethasone at 64 days of gestation, the decrease was 66.4+/-5.1%, which did not reach significance compared with the controls (P=0.10). Thus brief dexamethasone exposure during early gestation programmed hypertension independently of insulin resistance of glucose or amino acid metabolism; however, it did lead to increased insulin sensitivity of the inhibition of lipolysis, which may increase susceptibility to the development of obesity postnatally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.