The rich behavioral repertoire of animals is encoded in the CNS as a set of motorneuron activation patterns, also called ‘motor synergies’. However, the neurons that orchestrate these motor programs as well as their cellular properties and connectivity are poorly understood. Here we identify a population of molecularly defined motor synergy encoder (MSE) neurons in the mouse spinal cord that may represent a central node in neural pathways for voluntary and reflexive movement. This population receives direct inputs from the motor cortex and sensory pathways and, in turn, has monosynaptic outputs to spinal motorneurons. Optical stimulation of MSE neurons drove reliable patterns of activity in multiple motor groups, and we found that the evoked motor patterns varied on the basis of the rostrocaudal location of the stimulated MSE. We speculate that these neurons comprise a cellular network for encoding coordinated motor output programs.
The spinal cord contains neural networks that enable regionally distinct motor outputs along the body axis. Nevertheless, it remains unclear how segment-specific motor computations are processed because the cardinal interneuron classes that control motor neurons appear uniform at each level of the spinal cord. V2a interneurons are essential to both forelimb and hindlimb movements, and here we identify two major types that emerge during development: type I neurons marked by high Chx10 form recurrent networks with neighboring spinal neurons and type II neurons that downregulate Chx10 and project to supraspinal structures. Types I and II V2a interneurons are arrayed in counter-gradients, and this network activates different patterns of motor output at cervical and lumbar levels. Single-cell RNA sequencing (RNA-seq) revealed type I and II V2a neurons are each comprised of multiple subtypes. Our findings uncover a molecular and anatomical organization of V2a interneurons reminiscent of the orderly way motor neurons are divided into columns and pools.
Background: For over 16 years, we have selectively bred rats to show either high or low levels of exploratory activity within a novel environment. These "bred High Responder" (bHR) and "bred Low Responder" (bLR) rats serve as a model for temperamental extremes, exhibiting large differences in many internalizing and externalizing behaviors relevant to mood and substance abuse disorders. Methods:Our study elucidated persistent differences in gene expression related to bHR/bLR phenotype across development and adulthood in the hippocampus, a region critical for emotional regulation. We meta-analyzed eight transcriptional profiling datasets (microarray, RNA-Seq) spanning 43 generations of selective breeding (adult: n=46, P7: n=22, P14: n=49, P21: n=21; all male). We cross-referenced these results with exome sequencing performed on our colony to pinpoint candidates likely to mediate the effect of selective breeding on behavioral phenotype.Results: Genetic and transcriptional profiling results converged to implicate two genes with previous associations with metabolism and mood: Thyrotropin releasing hormone receptor and Uncoupling protein 2. Our results also highlighted bHR/bLR functional differences in the hippocampus, including a network essential for neurodevelopmental programming, proliferation, and differentiation, containing hub genes Bone morphogenetic protein 4 and Marker of proliferation ki-67. Finally, we observed differential expression related to microglial activation, which is important for synaptic pruning, including two genes within implicated chromosomal regions: Complement C1q A chain and Milk fat globule-EGF factor 8. Conclusion:These candidate genes and functional pathways have the capability to direct bHR/bLR rats along divergent developmental trajectories and promote a widely different reactivity to the environment..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.