Activation of Akt/PKB by growth factors requires multiple phosphorylation events. Phosphorylation of Thr 308 and Ser 473 of Akt by its upstream kinase(s) or autophosphorylation is critical for optimal activation of its kinase activity. Here, we present evidence that tyrosine phosphorylation is required for Akt activation. Epidermal growth factor treatment induces tyrosine phosphorylation of Akt in COS1 and PC3M cells, which is abrogated by PP2, a selective inhibitor for Src family tyrosine kinases. Elevated Akt activity is observed in v-Src transformed NIH3T3 cells, which is accompanied with increased tyrosine phosphorylation of Akt. Akt activity induced by growth factors is significantly reduced in SYF cells lacking Src, Yes, and Fyn, which can be restored by introducing c-Src, but not the kinaseinactive Src, back to these cells. Furthermore, we have identified two tyrosine residues near the activation loop of Akt that are important for its activation. Substitution of these residues with phenylalanine abolishes Akt kinase activity stimulated by growth factors. These two YF mutants fail to block Forkhead transcription factor activity in 293 cells and are unable to prevent apoptosis induced by matrix detachment. Our data suggest that, in addition to phosphorylation of Thr 308 and Ser 473 , tyrosine phosphorylation of Akt may be essential for its biological function.
Melanoma chondroitin sulphate proteoglycan (MCSP) is a cell-surface antigen that has been implicated in the growth and invasion of melanoma tumours. Although this antigen is expressed early in melanoma progression, its biological function is unknown. MCSP can stimulate the integrin-alpha4 beta1-mediated adhesion and spreading of melanoma cells. Here we show that stimulated MCSP recruits tyrosine-phosphorylated p130 cas, an adaptor protein important in tumour cell motility and invasion. MCSP stimulation also results in a pronounced activation and recruitment of the Rho-family GTPase Cdc42. MCSP-induced spreading of melanoma cells is dependent upon active Cdc42, a Cdc42-associated tyrosine kinase (Ack-1) and tyrosine phosphorylation of p130cas. Furthermore, vectors inhibiting Ack-1 or Cdc42 expression and/or function abrogate MCSP-induced tyrosine phosphorylation and recruitment of p130cas. Our findings indicate that MCSP may modify tumour growth or invasion by a unique signal-transduction pathway that links Cdc42 activation to downstream tyrosine phosphorylation and subsequent cytoskeletal reorganization.
Cell migration requires spatial and temporal regulation of filamentous actin (F-actin) dynamics. This regulation is achieved by distinct actin-associated proteins, which mediate polymerization, depolymerization, severing, contraction, bundling or engagement to the membrane. Mammalian Diaphanous-related (mDia) formins, which nucleate, processively elongate, and in some cases bundle actin filaments, have been extensively studied in vitro, but their function in the cell has been less well characterized. Here we study the role of mDia2 activity in the dynamic organization of F-actin in migrating epithelial cells. We find that mDia2 localizes in the lamella of migrating epithelial cells, where it is involved in the formation of a stable pool of cortical actin and in maintenance of polymerization-competent free filament barbed ends at focal adhesions. Specific inhibition of mDia2 alters focal adhesion turnover and reduces migration velocity. We suggest that the regulation of filament assembly dynamics at focal adhesions may be necessary for the formation of a stable pool of cortical lamella actin and the proper assembly and disassembly dynamics of focal adhesions, making mDia2 an important factor in epithelial cell migration.
These observations point to a pivotal role for DIP in the control of nonbranched and branched actin-filament assembly that is mediated by Diaphanous-related formins and activators of Arp2/3, respectively. The ability of DIP to trigger blebbing also suggests a role for mDia2 in the assembly of cortical actin necessary for maintaining plasma-membrane integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.