Here we report on the analysis of mitochondrial preparations by capillary electrophoresis with postcolumn laser-induced fluorescence detection. Individual mitochondria are detected by fluorescent labeling with the mitochondrion-selective probe, 10-nonyl acridine orange. Interactions between the organelles and the capillary walls are controlled by derivatization of the capillaries with poly(acryloylaminopropanol). As expected from the presence of charged groups in their outer membranes, isolated mitochondria have intrinsic electrophoretic mobilities. This property may be influenced by variations in size, morphology, membrane composition, and damage caused during the isolation procedure. The mobility distributions of mitochondria isolated from NS1 and CHO cells ranged from -1.2 x 10(-4) to -4.3 x 10(-4) cm2 V(-1) s(-1) and -0.8 x 10(-4) to -4.2 x 10(-4) cm2 V(-1) s(-1), respectively. Furthermore, there seems to be no correlation between the density of the mitochondrial fraction and the resultant electrophoretic mobility distribution. These results suggest a new method for characterization of organelle fractions and for counting individual organelles.
Submicrometer-sized fluorescent microspheres were loaded into the acidic organelles of NS-1 mouse myeloma cells via endocytosis. Confocal microscopy imaging showed that microspheres colocalized nearly perfectly with LysoTracker Red, a probe that stains acidic organelles. Unlike LysoTracker dyes that seem to leak from acidic organelles upon cell disruption, microspheres are retained within these organelles, facilitating their analysis following isolation. Using capillary electrophoresis (CE) with laser-induced fluorescence detection (LIF), the electrophoretic mobilities of acidic organelles were individually calculated and fluorescence intensities individually measured. When cells were incubated for sufficient time to allow for endocytosis (48 h) with 3.9 x 10(3) microspheres/cell, replicate CE-LIF analyses of the corresponding isolated fraction indicated a dramatic increase in the number of detected events (n = 1990 +/- 234) and in the overall fluorescence intensity of the individual events (0.38 +/- 0.01 RFU; average +/- SD; n = 3) over the corresponding <10-min incubations (n = 60; 0.21 RFU, respectively). In addition, a treatment with 4-fold increase in microsphere density (1.6 x 10(4) microspheres/cell), increased the number of detected individual events (n = 3427 +/- 101) and altered only slightly the fluorescence intensity and electrophoretic mobility distributions. The individual electrophoretic mobility values ranged from -1.45 x 10(-)(4) to -3.0 x 10(-)(4) cm(2) V(-)(1) s(-)(1) while the individual fluorescence values ranged from 0.1 V to over 8 V, demonstrating the benefit of detecting organelles individually rather than averaging their properties over single cells or bulk homogenates.
We report the application of capillary electrophoresis (CE) with postcolumn laser-induced fluorescence (LIF) detection to measure the cardiolipin content of individual mitochondria from cultured NS1 cells. Mitochondria were isolated by differential centrifugation and stained with the fluorescent dye 10-N-nonyl acridine orange which stoichiometrically binds to cardiolipin in a 1:1 or 2:1 ratio depending on the dye concentration. The green fluorescence resulting from the 1:1 complex was chosen for analysis because it is substantially more intense than the red fluorescence resulting from the 2:1 complex. Two dye concentrations that resulted in maximal and submaximal formation of the 1:1 10-N-nonyl acridine orange-cardiolipin complex were identified by spectrofluorometry. Individual mitochondria stained with both dye concentrations were separated and detected by CE with LIF detection. The data from mitochondria dosed with the lower dye concentration, where it is assumed that all the dye added to the mitochondrial sample was bound to cardiolipin, were used to derive a sensitivity factor relating fluorescence intensity of a mitochondrial event to its cardiolipin content. Using this factor, the cardiolipin contents of individual mitochondria stained with the higher dye concentration were determined, and ranged from 1.2 to 920 amol, with a median value of 4 amol. These results suggest a new strategy for estimating the organellar content of compounds that can be fluorescently tagged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.