SummaryGastrointestinal nematode infection represents a major threat to the health, welfare and productivity of sheep populations worldwide. Infected lambs have a reduced ability to absorb nutrients from the gastrointestinal tract, resulting in morbidity and occasional mortality. The current chemo‐dominant approach to nematode control is considered unsustainable due to the increasing incidence of anthelmintic resistance. In addition, there is growing consumer demand for food products from animals not subjected to chemical treatment. Future mechanisms of nematode control must rely on alternative, sustainable strategies such as vaccination or selective breeding of resistant animals. Such strategies take advantage of the host's natural immune response to nematodes. The ability to resist gastrointestinal nematode infection is considered to be dependent on the development of a protective acquired immune response, although the precise immune mechanisms involved in initiating this process remain to be fully elucidated. In this study, current knowledge on the innate and acquired host immune response to gastrointestinal nematode infection in sheep and the development of immunity is reviewed.
BackgroundGastrointestinal nematodes are one of the most serious causes of disease in domestic ruminants worldwide. There is considerable variation in resistance to gastrointestinal nematodes within and between sheep breeds, which appears to be due to underlying genetic diversity. Through selection of resistant animals, rapid genetic progress has been demonstrated in both research and commercial flocks. Recent advances in genome sequencing and genomic technologies provide new opportunities to understand the ovine host response to gastrointestinal nematodes at the molecular level, and to identify polymorphisms conferring nematode resistance.ResultsDivergent lines of Romney and Perendale sheep, selectively bred for high and low faecal nematode egg count, were genotyped using the Illumina® Ovine SNP50 BeadChip. The resulting genome-wide SNP data were analysed for selective sweeps on loci associated with resistance or susceptibility to gastrointestinal nematode infection. Population differentiation using FST and Peddrift revealed sixteen regions, which included candidate genes involved in chitinase activity and the cytokine response. Two of the sixteen regions identified were contained within previously identified QTLs associated with nematode resistance.ConclusionsIn this study we identified fourteen novel regions associated with resistance or susceptibility to gastrointestinal nematodes. Results from this study support the hypothesis that host resistance to internal nematode parasites is likely to be controlled by a number of loci of moderate to small effects.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-637) contains supplementary material, which is available to authorized users.
The objective of this study was to identify Scottish Blackface lambs that were at the extremes of the spectrum of resistance to gastrointestinal nematodes and characterise their response to an experimental nematode challenge. Lambs (n = 90) were monitored for faecal egg count (FEC) (2 samples from each of 2 independent natural infections). The most resistant (n = 10) and susceptible (n = 10) individuals were selected and challenged with 30,000 Teladorsagia circumcincta larvae (L3) at 9 months of age. Response to infection was monitored by measuring FEC, plasma pepsinogen, serum antibodies against nematode larval antigens and haematology profile, until necropsy at 71 days post infection. Worm burden, worm fecundity and the level of anti-nematode antibodies in abomasal mucosa were determined at necropsy.FEC was consistently higher in susceptible animals (P < 0.05), validating the selection method. Worm fecundity was significantly reduced in resistant animals (P = 0.03). There was also a significant correlation (r = 0.88; P < 0.001) between the number of adult worms and FEC at slaughter. There was no effect of phenotype (resistance/susceptibility) on plasma pepsinogen or on haematology profile.Phenotype had a significant effect on the level of anti-nematode IgA antibodies in serum (P < 0.01), reflecting a higher peak in resistant animals at day 7 post infection.It is concluded that significant variation in the response to gastrointestinal nematode challenge exists within the Scottish Blackface population with resistant animals displaying significantly lower FEC, lower worm fecundity and higher concentration of anti-nematode IgA antibodies in serum.-4 -
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.