Gordon syndrome (GS), or distal arthrogryposis type 3, is a rare, autosomal-dominant disorder characterized by cleft palate and congenital contractures of the hands and feet. Exome sequencing of five GS-affected families identified mutations in piezo-type mechanosensitive ion channel component 2 (PIEZO2) in each family. Sanger sequencing revealed PIEZO2 mutations in five of seven additional families studied (for a total of 10/12 [83%] individuals), and nine families had an identical c.8057G>A (p.Arg2686His) mutation. The phenotype of GS overlaps with distal arthrogryposis type 5 (DA5) and Marden-Walker syndrome (MWS). Using molecular inversion probes for targeted sequencing to screen PIEZO2, we found mutations in 24/29 (82%) DA5-affected families and one of two MWS-affected families. The presence of cleft palate was significantly associated with c.8057G>A (Fisher's exact test, adjusted p value < 0.0001). Collectively, although GS, DA5, and MWS have traditionally been considered separate disorders, our findings indicate that they are etiologically related and perhaps represent variable expressivity of the same condition.
Freeman-Sheldon syndrome, or distal arthrogryposis type 2A (DA2A), is an autosomal-dominant condition caused by mutations in MYH3 and characterized by multiple congenital contractures of the face and limbs and normal cognitive development. We identified a subset of five individuals who had been putatively diagnosed with "DA2A with severe neurological abnormalities" and for whom congenital contractures of the limbs and face, hypotonia, and global developmental delay had resulted in early death in three cases; this is a unique condition that we now refer to as CLIFAHDD syndrome. Exome sequencing identified missense mutations in the sodium leak channel, non-selective (NALCN) in four families affected by CLIFAHDD syndrome. We used molecular-inversion probes to screen for NALCN in a cohort of 202 distal arthrogryposis (DA)-affected individuals as well as concurrent exome sequencing of six other DA-affected individuals, thus revealing NALCN mutations in ten additional families with "atypical" forms of DA. All 14 mutations were missense variants predicted to alter amino acid residues in or near the S5 and S6 pore-forming segments of NALCN, highlighting the functional importance of these segments. In vitro functional studies demonstrated that NALCN alterations nearly abolished the expression of wild-type NALCN, suggesting that alterations that cause CLIFAHDD syndrome have a dominant-negative effect. In contrast, homozygosity for mutations in other regions of NALCN has been reported in three families affected by an autosomal-recessive condition characterized mainly by hypotonia and severe intellectual disability. Accordingly, mutations in NALCN can cause either a recessive or dominant condition characterized by varied though overlapping phenotypic features, perhaps based on the type of mutation and affected protein domain(s).
Distal arthrogryposis (DA) syndromes are the most common of the heritable congenital-contracture disorders, and ~50% of cases are caused by mutations in genes that encode contractile proteins of skeletal myofibers. DA type 5D (DA5D) is a rare, autosomal-recessive DA previously defined by us and is characterized by congenital contractures of the hands and feet, along with distinctive facial features, including ptosis. We used linkage analysis and whole-genome sequencing of a multiplex consanguineous family to identify in endothelin-converting enzyme-like 1 (ECEL1) mutations that result in DA5D. Evaluation of a total of seven families affected by DA5D revealed in five families ECEL1 mutations that explain ~70% of cases overall. ECEL1 encodes a neuronal endopeptidase and is expressed in the brain and peripheral nerves. Mice deficient in Ecel1 exhibit perturbed terminal branching of motor neurons to the endplate of skeletal muscles, resulting in poor formation of the neuromuscular junction. Our results distinguish a second developmental pathway that causes congenital-contracture syndromes.
Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285), c.247_250del (p.Asn83Hisfs4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy.
The distal arthrogryposis (DA) syndromes are a group of disorders characterized by non-progressive congenital contractures of the limbs. Mutations that cause distal arthrogryposis syndromes have been reported in six genes, each of which encodes a component of the contractile apparatus of skeletal myofibers. However, these reports have usually emanated from gene discovery efforts and thus potentially bias estimates of the frequency of pathogenic mutations at each locus. We characterized the spectrum of pathogenic variants in a cohort of 153 cases of DA1 (n = 48) and DA2B (n = 105). Disease-causing mutations in 56/153 (37%) kindreds including 14/48 (29%) with DA1 and 42/105 (40%) with DA2B were distributed nearly equally across TNNI2, TNNT3, TPM2, and MYH3. In TNNI2, TNNT3, and TPM2 the same mutation caused DA1 in some families and DA2B in others. We found no significant differences among the clinical characteristics of DA by locus or between each locus and DA1 or DA2B. Collectively, the substantial overlap between phenotypic characteristics and spectrum of mutations suggest that DA1 and DA2B should be considered phenotypic extremes of the same disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.